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SLEEP QUALITY/SLEEP TIMING
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Study Objectives: Individual differences in sleep timing have been widely recognized and are of particular relevance in adolescents and young adults who 
often show mild to severely delayed sleep. The biological mechanisms underlying the between-subject variance remain to be determined. Recent human 
genetics studies showed an association between sleep timing and melanopsin gene variation, but support for functional effects on downstream pathways 
and behavior was not demonstrated before. We therefore investigated the association between the autonomic (i.e., pupil diameter) and behavioral (i.e., sleep 
timing) readouts of two different downstream brain areas, both affected by the same melanopsin-dependent retinal phototransduction: the olivary pretectal 
nucleus (OPN) and the suprachiasmatic nucleus (SCN).
Methods: Our study population included 71 healthy individuals within an age range with known vulnerability to a delayed sleep phase (16.8–35.7 y, 37 males, 
34 females). Pupillometry was performed to estimate functionality of the intrinsic melanopsin-signaling circuitry based on the OPN-mediated post-illumination 
pupil response (PIPR) to blue light. Sleep timing was quantified by estimating the SCN-mediated mid-sleep timing in three different ways in parallel: using a 
chronotype questionnaire, a sleep diary, and actigraphy.
Results: All three measures consistently showed that those individuals with a later mid-sleep timing had a more pronounced PIPR (0.03 < P < 0.05), 
indicating a stronger blue-light responsiveness of the intrinsic melanopsin-based phototransduction circuitry.
Conclusions: Trait-like individual differences in the melanopsin phototransduction circuitry contribute to individual differences in sleep timing. Blue light-
sensitive young individuals are more prone to delayed sleep.
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INTRODUCTION
The suprachiasmatic nucleus (SCN) in the hypothalamus is the 
central pacemaker for endocrine, physiological, and behav-
ioral rhythms.1 The rhythms orchestrated by this endogenous 
clock are characterized by a periodicity of approximately 24 h 
and are therefore dubbed “circadian rhythms” (circa = about, 
dies = day).2 In order to be in phase with the environment (i.e., a 
day on earth), however, these circadian rhythms need to be syn-
chronized to an exact 24-h cycle. The most important environ-
mental information used for this entrainment is the light-dark 
cycle.3 Key players in this so called circadian photoentrain-
ment are the intrinsically photosensitive retinal ganglion cells 
(ipRGCs)4,5: a small subset of retinal ganglion cells expressing 
the photopigment melanopsin (peak sensitivity 460–480 nm), 
which renders them intrinsically photosensitive.6,7 The ipRGCs 
integrate their intrinsic photoresponse with the extrinsic input 
from the classic rod and cone phototransduction pathways.8 As 
a result of direct connections between ipRGCs and the brain, 
the integrated information on environmental light is directly 
transduced from the retina to downstream areas, with the 
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Significance
Biological mechanisms underlying individual differences in sleep timing are insufficiently understood. We show an association of individual differences in 
sleep timing with specific functionality of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Focusing on adolescents and 
young adults, an age range with known vulnerability to a delayed sleep phase, we measured the post-illumination pupil response after blue light. This 
measure of intrinsic ipRGC functionality was consistently associated with three independent measures of sleep timing (i.e., a chronotype questionnaire, 
a sleep diary, and actigraphy). Individuals with a later sleep timing had a stronger intrinsic ipRGC responsiveness to blue light. Clinical interventions for 
delayed sleep phase syndrome may benefit from considering hypersensitivity to blue light.

SCN as one of the main targets.9 From an evolutionary per-
spective, ambient light solely consisted of sunlight, but since 
the introduction of electric light, the 24-h exposure profile is 
increasingly becoming a mixture of solar and artificial light.10 
Findings from previous studies suggest that this “light pollu-
tion” affects photoentrainment of the biological clock and may 
shift circadian rhythms.11,12

The direction of photoinduced circadian shifts is dependent 
on the diurnal profile of solar and artificial light exposure ac-
cording to a so-called phase response curve.13 Morning bright 
light advances circadian phase,14 whereas bright light expo-
sure in the evening causes a phase delay.15 Classic studies on 
circadian rhythms identified circadian phase changes from 
shifts in the core body temperature minimum or the dim light 
onset of the sleep-promoting hormone melatonin.16,17 Photo-
induced shifts were also found in timing of the sleep-wake 
cycle,18 which is the most explicitly expressed behavioral 
circadian rhythm.19,20 Interestingly, the phase shifting effects 
of light on sleep-wake timing show a considerable interindi-
vidual variation.21 Whereas entrainment in “early birds” is 
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more likely to result in a sleep-wake schedule that is advanced 
relative to the environmental light-dark cycle, the entrain-
ment of “night owls” is more likely to result in a sleep-wake 
schedule that is relatively delayed. These individual differ-
ences in internal-external phase relationships are thought to 
result, in part, from polymorphisms in core clock genes.22–24 
Recent findings moreover suggest that the individual differ-
ences may involve as well polymorphisms in genes of the 
phototransduction circuitry.25,26 Human genetics studies found 
an association between sleep timing and melanopsin gene 
variation. Previous work also showed chronotype-dependent 
differential responses to light.27,28 It remains to be evaluated, 
however, whether such individual differences actually involve 
a specific functionality of the melanopsin phototransduction 
circuitry. We here address this question, by assessing the asso-
ciation of individual differences in a pupillary response that is 
independent from the inputs from rods and cones and specific 
to intrinsic melanopsin-dependent phototransduction effects 
on the downstream olivary pretectal nucleus (OPN), with those 
in three different markers of sleep timing involving the SCN.29 
We focus on healthy adolescents and young adults, a popula-
tion in which a mild to severely delayed sleep timing is highly 
prevalent.30,31 Functionality of the intrinsic melanopsin-driven 
phototransduction circuitry is assessed from the post-illumi-
nation pupil response (PIPR) after bright blue light (i.e., the 
sustained pupil constriction), which indicates the strength of 
the photoresponsiveness of the intrinsic melanopsin-signaling 
phototransduction circuitry.32 Individual differences in PIPR 
are correlated with sleep timing assessed in three ways: using 
the Munich Chronotype Questionnaire (MCTQ),33 the Con-
sensus Sleep Diary,34 and actigraphy.35

METHODS

Participants
We included participants with an age between 16 and 36 y. 
Other inclusion criteria were self-acclaimed health and no use 
of medication, as indicated by the sleepregistry.nl36 implemen-
tation of the health-related questions of the Duke Structured 
Interview for Sleep Disorders.37 The sleepregistry.nl imple-
mentation includes questions on current and past health issues 
according to the 10 categories of the International Classifica-
tion of Diseases. Shift workers were excluded. Nagel anomalo-
scope tests were used to exclude participants suffering from 
color vision deficiency.38 Participants received oral and written 
information on the study and signed informed consent before 
participation. The study was approved by the Medical Ethical 
Committee of the VU University Medical Center Amsterdam.

Our study population included 37 males and 34 females 
with a mean age ± standard deviation [range] of 22.7 ± 5.0 
[16.8 – 35.7] y, and was composed of participants included in 
three different studies. As part of these studies, all 71 partici-
pants were subjected to a PIPR assessment, and completed the 
MCTQ to obtain a measure for habitual sleep timing. Recent 
sleep timing was measured in 56 of the 71 participants using a 
sleep diary and actigraphy: in 29 participants immediately fol-
lowing the PIPR assessment and in 27 participants one month 
prior to the PIPR assessment.

Post-illumination Pupil Response
Most characteristics of the pupillary light reflex are deter-
mined by the combined activation of rods, cones, and mela-
nopsin.39 Conversely, the PIPR is a feature of the pupillary light 
reflex that is almost entirely driven by melanopsin activation, 
with only limited contribution of rod and cone activity, and can 
therefore be used to quantify the functionality of the intrinsic 
melanopsin-signaling system.32 Details of the pupillometry 
paradigm for PIPR assessment are described elsewhere.40 In 
brief, using a custom-made infrared pupillometry setup, the 
pupil diameter of the left eye was measured while the dilated 
(tropicamide 0.5%) pupil of the right eye underwent a light 
exposure protocol. This protocol contained five consecutive 
5-min blocks: baseline dark; monochromatic red light (peak 
wavelength (full width half maximum): 630 (20) nm, lumi-
nance: 375 cd/m2) to maximize the effect of subsequent blue 
light41; dark; monochromatic blue light (peak wavelength (full 
width half maximum): 470 (20) nm, luminance: 375 cd/m2); 
and postblue dark. We calculated the PIPR by subtracting pupil 
diameter during post-blue dark from pupil diameter during 
baseline dark.42,43 All PIPR assessments were performed be-
tween 8:30 and 17:00 to avoid the evening and nighttime modu-
lation of the melanopsin-based phototransduction circuitry.44 
We previously showed that this outcome parameter is sensitive 
to individual differences and has very high within-subject test-
retest reliability.40

Habitual Sleep Timing: Munich Chronotype Questionnaire
From the MCTQ we obtained habitual lights-out time, sleep 
onset latency, and final wake-up time separately for work days 
and free days. Sleep onset time was calculated by subtracting 
sleep onset latency from lights-out time.33 Sleep duration was 
calculated as the duration between sleep onset time and final 
wake-up time and mid-sleep as the midpoint between them.

Recent Sleep Timing: Consensus Sleep Diary
As a second measure of sleep timing, 56 participants kept a 
sleep diary for 1 w. From the sleep diaries we obtained lights-
out time, sleep onset latency, and final wake-up time. For each 
of the 7 days, sleep onset time, mid-sleep time, and sleep dura-
tion were calculated as previously described.

Recent Sleep Timing: Actigraphy
To obtain an objective estimate of sleep timing, 56 participants 
wore an actigraph during the week they kept a sleep diary. 
Participants were equipped with either a traditional actigraph 
(Philips Actiwatch Spectrum, Philips Respironics, Murrysville, 
PA, USA) or a microelectromechanical accelerometer (Move II, 
Movisens GmbH, Karlsruhe, Germany). We previously showed 
almost perfect agreement between these two types of acti-
graphs in discriminating between sleep and wake.45 Sleep onset 
time and final wake-up time were automatically estimated 
using a detection algorithm46 implemented in Matlab (Version 
2014A, The Mathworks Inc., Natick, MA, USA). The algorithm 
searches for these two parameters between the lights-out time 
and final wake-up time as obtained from the sleep diary (https://
github.com/btlindert/actant-1). Mid-sleep and sleep duration 
were calculated as previously described.



SLEEP, Vol. 39, No. 6, 2016 1307 Sleep Timing and Phototransduction—van der Meijden et al.

Statistical Analysis
Mixed-effect regression models were used to estimate how 
individual differences in the PIPR predicted individual dif-
ferences in sleep timing. Mid-sleep was used as a the main 
marker for sleep timing.47 Ancillary analyses with sleep onset 
time and final wake-up time as outcome measures were run 
to determine whether mid-sleep shifts arose from changes in 
sleep onset time, wake-up time, or both. Finally, it was evalu-
ated whether individual differences in the PIPR predicted indi-
vidual differences in sleep duration.

The data from all three measurement techniques represented 
two-level hierarchies. For each participant, the MCTQ pro-
vided two sleep timing measures, one for work days and one 
for free days. The sleep diaries and actigraphy provided seven 
sleep timing measures: five for work days and two for free days. 
Type of day (work day versus free day) was included as within-
subject time-varying covariate, dummy coded as 0 for work 
days and 1 for free days. Age and sex were initially included 
as possible confounding covariates.31 Sex was dummy coded 
as 0 for females and 1 for males. Covariates were selected for 
inclusion in the final model using backward elimination and 
comparing models with likelihood-ratio tests. The PIPR and 
age variable were centered around the grand mean to optimize 
interpretation of the model’s intercept and slope parameters.48 
Q-Q plots were made for all models to evaluate the assump-
tion of a normal distribution of the residuals. Mixed-effect 
regression models were conducted using the “lme4” package 
for R (Version 3.1.1, R Foundation for Statistical Computing, 
Vienna, Austria). The significance of the effects of the inde-
pendent variables on the sleep timing variables was evaluated 
using t-tests with the denominator degrees of freedom based 
on Satterthwaite approximation.

RESULTS
Underscoring the value of multiple outcome measures, sleep 
timing derived from the MCTQ shared no more than 48.3% 
of its variance with the variance in mid-sleep timing esti-
mated from sleep diaries and 51.2% of its variance with the 
variance in mid-sleep timing estimated from actigraphy. The 
mid-sleep timing estimates from sleep diaries and actigraphy 
shared 94.5% of their interindividual variance. Regression 
analyses for all three measures consistently indicated that 
people with more pronounced PIPR showed a later mid-sleep 
timing (MCTQ: P = 0.03; sleep diary: P = 0.046; actigraphy: 
P = 0.04) (Figure 1). The association between the magnitude 
of the PIPR and mid-sleep timing arose from later sleep onset 
(MCTQ: P = 0.01; sleep diary: P = 0.02; actigraphy: P = 0.04) 
rather than a delay in wake-up time (MCTQ: P = 0.15; sleep 
diary: P = 0.30; actigraphy: P = 0.17) (Table 1). MCTQ data 
indicated that individuals with a more pronounced PIPR had a 
shorter sleep duration (P = 0.04), but this association was not 
confirmed using sleep duration estimates from sleep diaries 
(P = 0.12) or actigraphy recordings (P = 0.25).

The association of individual differences in PIPR magni-
tude and sleep timing was not secondary to confounding by 
common effects of age or sex. Sex did not affect either PIPR 
magnitude (P = 0.82) or any of the three mid-sleep variables 
(0.19 < P < 0.51). Whereas PIPR magnitude decreased with 

Figure 1—The relationship between post-illumination pupil response 
(PIPR) and mid-sleep timing. Mid-sleep was obtained using the Munich 
Chronotype Questionnaire (MCTQ; top panel), the Consensus Sleep 
Diary (sleep diary; center panel), and actigraphy (bottom panel). Each 
dot represents the weekly average of mid-sleep per participant. For the 
MCTQ the average mid-sleep for 1 w was calculated using the following 
formula: [ (5 * mid-sleep during work days + 2 * mid-sleep during 
free days) / 7 ]. The lines indicate the association between PIPR and 
mid-sleep timing as obtained from the MCTQ (r = 0.36), sleep diaries 
(r = 0.39), and actigraphy (r = 0.40).
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increasing age (P = 0.03) and mid-sleep timing on all three mea-
sures became earlier with increasing age (6 · 10−4 < P < 0.01), 
these changes did not confound the association between PIPR 
and sleep timing: the inclusion of age as a covariate in the 
linear regression models did not eliminate the association be-
tween PIPR and sleep timing. Type of day explained a consid-
erable part of the within-subject variance in mid-sleep timing 
(MCTQ: 78.2%; sleep diary: 41.0%; actigraphy: 43.1%). Inclu-
sion of type of day as a covariate therefore improved estima-
tion of individual sleep timing and allowed for a more reliable 
evaluation of the relationship between individual differences 
in sleep timing and interindividual variation in PIPR (see 
Figure S1 in the supplemental material for the relationship be-
tween PIPR and mid-sleep during free days). Predictably, the 
effect of type of day on mid-sleep timing was significant for 
all three measures: mid-sleep during free days was later than 
during work days (all: P < 1 · 10−15).

DISCUSSION
The aim of the current study was to assess the relationship 
between interindividual variation in functionality of the in-
trinsic melanopsin-dependent circuitry and individual differ-
ences in the timing of sleep in a healthy young population with 
known vulnerability to a delayed sleep phase. We found a sig-
nificant association showing that individuals with a stronger 
blue-light responsiveness of the intrinsic melanopsin-based 
phototransduction circuitry slept at a later phase of the 24-h 
light-dark cycle.

Previous studies showed that individual differences in the 
habitual timing of sleep are related to the magnitude of the 
effect of light exposure on acute melatonin levels. One study 
reported that two individuals with early habitual bedtimes 
lacked the melatonin-suppressing effect of light.28 In contrast, 
another study showed enhanced light-induced melatonin sup-
pression in individuals with very late habitual bedtimes due 
to delayed sleep phase disorder.27 Interestingly, others showed 
that individuals with an increased photoinduced delay of 

melatonin secretion had a stronger PIPR.49 These endocrine 
findings are in line with our results on behavioral circadian 
measures, indicating that an increased PIPR strength is asso-
ciated with a larger photoinduced delay of sleep timing. For 
future studies it would therefore be interesting to integrate 
endocrine and behavioral circadian measures and relate them 
to the PIPR to more specifically investigate to what extent 
individual phase differences are related to individual differ-
ences at the very earliest stage of circadian photoentrainment 
(i.e. the melanopsin-expressing ipRGCs in the retina). If a ro-
bust association is demonstrated, it is tempting to imagine the 
feasibility of estimating an individual’s circadian phase from 
the PIPR in combination with one’s 24-h light exposure profile. 
This would be a major advantage, because such measures may 
be less costly than dim light melatonin onset assessment (i.e., 
one of the most reliable markers of the phase of the circadian 
pacemaker in the SCN).40,50

A limitation of our study was that our study design does 
not allow for a causal interpretation of the association between 
individual differences in sleep timing and interindividual 
variation in functionality of the intrinsic melanopsin-based 
phototransduction circuitry. However, we consider it more 
likely that an individual’s melanopsin-based phototransduction 
circuitry affects habitual sleep, rather than that an individual 
night affects the PIPR, because we have previously shown 
that the PIPR magnitude is highly replicable across multiple 
assessments within subjects,40 whereas sleep timing is quite 
variable over subsequent nights.51 An adequate estimate of ha-
bitual sleep timing requires averaging 1 w of data to overcome 
most of the day-to-day variance,51 as employed in the current 
study. A limitation of the study was that information on the 
participant’s use of alcohol, health food supplements, or rec-
reational drugs was incomplete. The intake of such substances 
may alter the pupil response52 and sleep timing53 and thus 
have increased the unexplained variance in our data. We did 
obtain the number of alcohol consumptions during the week 
in which the participants filled out the sleep diary and wore 

Table 1—Model estimates of the effects of post-illumination pupil response, age, and type of day on sleep timing.

Measure Mid-Sleep Sleep Onset Time Wake Up Time Sleep Duration
Intercept MCTQ

Sleep diary
Actigraphy

03:30 ± 00:06***
03:45 ± 00:06***
03:40 ± 00:06***

23:46 ± 00:07
00:07 ± 00:07
00:10 ± 00:08

07:14 ± 00:06***
07:22 ± 00:06***
07:10 ± 00:06***

07:28 ± 00:06***
07:15 ± 00:07***
06:59 ± 00:07***

PIPR (mm) MCTQ
Sleep diary
Actigraphy

00:14 ± 00:06*
00:15 ± 00:07*
00:16 ± 00:07*

00:20 ± 00:08*
00:22 ± 00:09*
00:21 ± 00:10*

00:08 ± 00:06
00:09 ± 00:08
00:10 ± 00:07

−00:12 ± 00:06*
−00:14 ± 00:09
−00:10 ± 00:09

Age (y · 10−1) MCTQ
Sleep diary
Actigraphy

−00:38 ± 00:11***
−00:40 ± 00:14**
−00:37 ± 00:14*

−00:25 ± 00:14
−00:12 ± 00:17
−00:08 ± 00:19

−00:50 ± 00:09***
−01:07 ± 00:15***
−01:05 ± 00:14***

−00:25 ± 00:10*
−00:56 ± 00:16***
−00:57 ± 00:17***

Type of day
(free vs. work)

MCTQ
Sleep diary
Actigraphy

01:43 ± 00:06***
01:35 ± 00:07***
01:38 ± 00:07***

01:07 ± 00:06***
01:25 ± 00:08***
01:21 ± 00:08***

02:20 ± 00:08***
01:46 ± 00:08***
01:54 ± 00:08***

01:14 ± 00:07***
00:20 ± 00:09*
00:33 ± 00:09***

Mean values ± standard error are displayed. *P < 0.05; **P < 0.01; ***P < 0.001. Each estimate was obtained from the MCTQ (top row), the Consensus 
Sleep Diary (sleep diary; center row), and actigraphy (bottom row). The intercept reflects the population mean during work days and is referenced to 
midnight (00:00). MCTQ, Munich Chronotype Questionnaire; PIPR, post-illumination pupil response.
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an actigraph. We found no association between alcohol intake 
and mid-sleep during work days (P = 0.35), indicating that the 
possible confounding effect of substance use on our results 
would be only small, if present. Another limitation of our study 
was that the PIPR assessment only allows for a quantification 
of the functionality of the intrinsic melanopsin-based photo-
transduction circuitry and not for estimating functionality of 
the extrinsic rod and cone pathways. For future studies it may 
therefore be interesting to include functional measures on both 
the intrinsic as well as the extrinsic circuitry in order to get a 
more complete picture of the individual differences in ipRGC 
functionality. Another possible limitation of our study was that 
we did not measure light history. Differences in habitual en-
vironmental light exposure may contribute to interindividual 
variation in sleep timing.13 However, whereas a different way 
of assessing the PIPR is sensitive to one’s light history,41 the 
measure we here applied is more robust and does not seem to 
be confounded by it.40

We have previously shown that the PIPR, assessed in the 
way presented here, may be a very reliable biomarker with con-
siderable interindividual differences, yet marginal sensitivity 
to environmental and behavioral changes. We therefore con-
sider it likely that these individual differences in functionality 
of the intrinsic melanopsin-dependent circuitry result from the 
natural variation in the melanopsin gene. Indeed, melanopsin-
driven characteristics of pupillary light reflex have previously 
been associated with melanopsin polymorphisms.54 Interest-
ingly, other studies reported that melanopsin gene polymor-
phisms were also associated with the timing of sleep.25,26 Future 
studies should ideally combine assessment of melanopsin 
polymorphisms, PIPR, dim light melatonin onset, and sleep 
timing in order to elucidate the mechanisms underlying their 
associations and to assess the value of the PIPR assessment to 
understand individual differences in circadian regulation.

ABBREVIATIONS
DLMO, Dim Light Melatonin Onset
ipRGC, intrinsically photosensitive retinal ganglion cell
MCTQ, Munich ChronoType Questionnaire
OPN, olivary pretectal nucleus
PIPR, post-illumination pupil response
SCN, suprachiasmatic nucleus
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