Transportation noise exposure, noise annoyance and respiratory health in adults: A repeated-measures study

Ikenna C. Ezea,b,⁎, Maria Forastera,b,c,d,e, Emmanuel Schaffnera,b, Danielle Vienneaua,b, Harris Héritiera,b, Reto Pierenf, Laurie Thiesseg, Franziska Rudzikg, Thomas Rotheh, Marco Ponsi, Robert Betttschartj, Christian Schindlera,b, Christian Cajocheni, Jean-Marc Wunderlii, Mark Brinkh, Martin Rööslia,b, Nicole Probst-Henscha,b

aSwiss Tropical and Public Health Institute, Basel, Switzerland
bUniversity of Basel, Basel, Switzerland
cISGlobal, Barcelona Institute for Global Health, University Pompeu Fabra, Barcelona, Spain
dCIBER Epidemiologia y Salud Pública, Madrid, Spain
eBlanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
fEmpa Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
gCenter for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
hAbteilung Innere Medizin, Kantonsspital Graubünden, Chur, Switzerland
iDepartment of Internal Medicine, Regional Hospital of Lugano, Lugano, Switzerland.
jLungen Zentrum, Hirslanden Klinik, Aarau, Switzerland
kFederal Office for the Environment, Bern, Switzerland

ARTICLE INFO

Handling Editor: Olga-Ioanna Kalantzi

Keywords: Noise
Transportation
Annoyance
Signs and symptoms
Respiratory
Asthma
Air pollution
Cohort studies

ABSTRACT

Transportation noise leads to sleep disturbance and to psychological and physiological sustained stress reactions, which could impact respiratory health. However, epidemiologic evidence on associations of objective transportation noise exposure and also perceived noise annoyance with respiratory morbidity is limited. We investigated independent associations of transportation noise exposure and noise annoyance with prevalent respiratory symptoms and incident asthma in adults.

Using 17,138 observations (from 7049 participants) from three SAPALDIA (Swiss Cohort Study on Lung and Heart Diseases in Adults) surveys, we assessed associations of transportation noise exposure and noise annoyance with prevalent respiratory symptoms, and with incident asthma (in 10,657 nested observations from 6377 participants). Annual day-evening-night transportation noise comprising road, railway and aircraft Lden (Transportation Lden) was calculated for the most exposed façade of participants’ residence using Swiss noise models. Transportation noise annoyance was assessed using an 11-point scale, and participants reported respiratory symptoms and doctor-diagnosed asthma at each survey. We estimated associations with transportation Lden (as well as source-specific Lden) and noise annoyance, independent of air pollution and other potential confounders, using mutually-adjusted mixed logistic and Poisson models and applying random intercepts at the level of the participants.

Prevalent respiratory symptoms ranged from 5% (nocturnal dyspnoea) to 23% (regular cough/phlegm). Transportation noise annoyance, but not Lden, was independently associated with respiratory symptoms and current asthma in all participants, with odds ratios (OR) and 95% confidence intervals (CI) ranging between 1.03 (95%CI: 1.01, 1.06) and 1.07 (95% CI: 1.04, 1.11) per 1-point difference in noise annoyance. Both noise annoyance and Lden showed independent associations with asthma symptoms among asthmatics, especially in those reporting adult-onset asthma [OR\textsubscript{Lden}: 1.90 (95% CI: 1.25, 2.89) per 10 dB; p-value of interaction (adult-onset vs. childhood-onset): 0.03; OR\textsubscript{noise annoyance}: 1.06 (95%CI: 0.97, 1.16) per 1-point difference; p-value of interaction: 0.06]. No associations were found with incident asthma.

Transportation noise level and annoyance contributed to symptom exacerbation in adult asthma. This

Abbreviations: BMI, Body mass index; CI, Confidence interval; Lden, Day-evening-night noise level; NDVI, Normalized difference vegetation index; NO\textsubscript{2}, Nitrogen dioxide; OR, Odds ratio; PM\textsubscript{10}, Particulate matter with ≤10 µm diameter; RR, Risk ratio; SAPALDIA, Swiss cohort study on air pollution and lung and heart diseases in adults; SEP, Socio-economic position

⁎ Corresponding author at: Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socintrassee 57, 4051 Basel, Switzerland.

E-mail address: ikenna.eze@swisstph.ch (I.C. Eze).

https://doi.org/10.1016/j.envint.2018.10.006
Received 19 July 2018; Received in revised form 19 September 2018; Accepted 2 October 2018
Available online 12 October 2018
0160-4120/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
suggests both psychological and physiological noise reactions on the respiratory system, and could be relevant for asthma care. More studies are needed to better understand the effects of objective and perceived noise in asthma aetiology and overall respiratory health.

1. Introduction

Transportation noise exposure could negatively impact respiratory health. Noise is thought to enhance stress response acting along the Hypothalamic-Pituitary-Adrenal axis (Recio et al., 2016) as evidenced by higher morning saliva cortisol in noise-exposed children (Ising et al., 2004). The state of stress may disrupt night-time recovery of the immune system and contribute to pro-inflammatory processes in the respiratory tract (Recio et al., 2016). Stressful life events and stress-related biomarkers, including allostatic load, were previously associated with respiratory problems and asthma incidence in children and adults (Kerkella et al., 2012; Loerbroks et al., 2009; Rod et al., 2012; van de Loo et al., 2016; Zijlman et al., 2017) as well as worsening of symptoms in patients with asthma (Chen and Miller, 2007; Wright, 2011).

Despite these plausibility links evidencing a perceptive emotional stress reaction, the independent role of transportation noise exposure and its subjective counterpart, noise annoyance, in respiratory morbidity, have not received much attention. Short-term road traffic noise exposure was associated with increased rates of emergency service calls and hospitalizations for respiratory symptoms (Carmona et al., 2017; Tobias et al., 2001) as well as excess respiratory mortality (Recio et al., 2016). The state of stress may disrupt night-time recovery of the immune system and contribute to pro-inflammatory processes in the respiratory tract (Recio et al., 2016). Stressful life events and stress-related biomarkers, including allostatic load, were previously associated with respiratory problems and asthma incidence in children and adults (Kerkella et al., 2012; Loerbroks et al., 2009; Rod et al., 2012; van de Loo et al., 2016; Zijlman et al., 2017) as well as worsening of symptoms in patients with asthma (Chen and Miller, 2007; Wright, 2011).

Despite these plausibility links evidencing a perceptive emotional stress reaction, the independent role of transportation noise exposure and its subjective counterpart, noise annoyance, in respiratory morbidity, have not received much attention. Short-term road traffic noise exposure was associated with increased rates of emergency service calls and hospitalizations for respiratory symptoms (Carmona et al., 2017; Tobias et al., 2001) as well as excess respiratory mortality (Recio et al., 2016). The state of stress may disrupt night-time recovery of the immune system and contribute to pro-inflammatory processes in the respiratory tract (Recio et al., 2016). Stressful life events and stress-related biomarkers, including allostatic load, were previously associated with respiratory problems and asthma incidence in children and adults (Kerkella et al., 2012; Loerbroks et al., 2009; Rod et al., 2012; van de Loo et al., 2016; Zijlman et al., 2017) as well as worsening of symptoms in patients with asthma (Chen and Miller, 2007; Wright, 2011).

Air pollution is in part correlated with transportation noise, especially road traffic (Foraster, 2013) and has an established short-term effect on symptom exacerbation in patients with chronic respiratory disease, but its role in the aetiology of asthma and chronic obstructive pulmonary disease remains unclear (Doiron et al., 2017; Heinrich et al., 2005; Jacquemin et al., 2015; Schikowski et al., 2014).

None of these previous studies considered noise annoyance as a determining factor, even though it may have an independent health effect by reflecting individually-varying noise perception. To our knowledge, no study has investigated the combined association of long-term noise exposure and annoyance with respiratory symptoms and incidence of asthma. Therefore, we investigated the independent air pollution-adjusted associations of composite transportation (road, railway and aircraft) and source-specific transportation noise exposure and noise annoyance with prevalent respiratory symptoms and incident asthma in an adult population sample.

2. Materials and methods

2.1. Study population

We used data from the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) which recruited 9651 randomly-selected adults, from eight Swiss areas (Basel, Wald, Davos, Lugano, Montana, Payerno, Aarau and Geneva) in 1991 (SAP1) (Martin et al., 1997). So far, two follow-up surveys were completed in 2001/2002 (SAP2; 8047 participants) (Ackermann-Liebrich et al., 2005) and 2010/2011 (SAP3; 6088 participants). At each survey, participants completed questionnaires on their health and lifestyle, and had physical examination. Questions on respiratory health were covered in all three surveys, including respiratory symptoms and asthma status, as well as noise annoyance. Assignment of modelled individual-level transportation noise and air pollution exposures was also done for the three surveys. Based on participation at each survey, we had a total of 23,786 eligible observations. We excluded 6648 observations for missing covariates, thus including 17,138 observations. All included observations had data on asthma outcomes, exposures and potential confounders. Details of observation selection are presented in Supplementary Fig. S1. Ethics approvals for the SAPALDIA study were obtained from the Swiss Academy of Medical Sciences and the ethics committees of the participating cantons. All participants provided written informed consent before participating in any SAPALDIA survey.

2.2. Identification of respiratory symptoms and asthma cases

At SAP1, SAP2 and SAP3, participants answered questions on nine respiratory symptoms: regular cough/phlegm, chronic cough/phlegm, wheezing, wheezing without cold, chest tightness, nocturnal dyspnoea causing persons to wake up, diurnal dyspnoea at rest and dyspnoea after exercise. We identified participants as having a symptom based on an affirmative response to the corresponding question shown in Table 1. To enable the combined exploration of asthma-specific symptoms, we created a “current asthma” variable defined as having doctor-diagnosed asthma and having reported any of the following for the preceding 12-month period: (i) asthma attack or (ii) using asthma medication or (iii) at least three of the symptoms ‘Wheezing with dyspnoea’, ‘chest tightness’, ‘nocturnal dyspnoea’, ‘diurnal dyspnoea at rest’ and ‘dyspnoea after exercise’(Boudier et al., 2013). The control group for the current asthma variable includes participants without doctor-diagnosed asthma, as well as participants with doctor-diagnosed asthma but not qualifying as having current asthma in the past 12 months (i.e. having

Table 1

<table>
<thead>
<tr>
<th>Respiratory symptom</th>
<th>Question asked at each of the three SAPALDIA surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular cough/phlegm</td>
<td>Do you usually cough (or bring up phlegm) first thing in the morning or during the day or at night?</td>
</tr>
<tr>
<td>Chronic cough/phlegm</td>
<td>Do you cough or bring up phlegm during the day or at night on most days for at least 3 months each year and since at least 2 years?</td>
</tr>
<tr>
<td>Wheezing</td>
<td>In the last 12 months, have you had wheezing or whistling in your chest at any time?</td>
</tr>
<tr>
<td>Wheezing without cold</td>
<td>Did you have this wheezing or whistling in your chest when you did not have a cold?</td>
</tr>
<tr>
<td>Wheezing with dyspnoea</td>
<td>Did you have trouble breathing when you had this wheezing or whistling in your chest?</td>
</tr>
<tr>
<td>Chest tightness</td>
<td>Have you woken up with a feeling of tightness in your chest at any time in the last 12 months?</td>
</tr>
<tr>
<td>Nocturnal dyspnoea</td>
<td>Have you been woken by an attack of shortness of breath at any time during the past 12 months?</td>
</tr>
<tr>
<td>Diurnal dyspnoea at rest</td>
<td>Have you had an attack of shortness of breath while resting at any time during the past 12 months?</td>
</tr>
<tr>
<td>Dyspnoea after exercise</td>
<td>Have you had an attack of shortness of breath following strenuous activity at any time during the past 12 months?</td>
</tr>
</tbody>
</table>
controlled asthma symptoms).

We identified incident asthma at SAP2 and SAP3 if participants reported having doctor-diagnosed asthma or used asthma medication at SAP2 or SAP3, while having responded negatively at the previous survey. Towards sensitivity analyses, we used an alternative definition of incident asthma which excluded participants who previously qualified for incident asthma based on having at least three of the symptoms ‘Wheezeing with dyspnoea’, ‘chest tightness’, ‘nocturnal dyspnoea’, ‘diurnal dyspnoea at rest’ and ‘dyspnoea after exercise’ (Boudier et al., 2013).

2.3. Assignment of individual transportation noise exposure and noise annoyance

Annual average road, railway and aircraft noise were calculated at the most exposed façade of participants’ residential floors for 1991, 2001 and 2011 (corresponding to SAP1, SAP2 and SAP3 respectively) using validated Swiss noise models. As described elsewhere (Karipidis et al., 2014), road traffic noise was modelled using the sonROAD emission model (Heutschi, 2004) and the StL-86 propagation model (FOEN, 1987) using input data covering bridges, noise barriers, road and hourly traffic statistics. Railway noise was modelled using the sonRAIL emission model (Thron and Hecht, 2010) and the SEMIBEL propagation model (FOEN, 1990) using input data covering railway tracks’ geometry, noise barriers, train types and rail traffic statistics. Aircraft noise was modelled using FLULAA2 software (Empa, 2010). Input data for aircraft noise included air traffic statistics, radar data, acoustic footprints and idealized number and timing of flights covering one military airport (Payerne) and three major civilian airports (Basel, Geneva and Zurich). These airports are located in or near the SAPALDIA areas (Wald is part of Zurich). Some participants may have moved out of the SAPALDIA areas (Supplementary Fig. S2), thus their moving history and all addresses were considered for the exposure modelling.

Input data were mostly available in good quality at the three time points for aircraft models, but road traffic and railway data in good quality were only available for 2001 and 2011. The available road traffic and railway input data before 2000 was comparably uncertain (missing data or inaccurate models) especially for minor roads and some railway lines. The nationwide average growth of road and railway traffic volumes between 1991 and 2001 amounted to 6% and 5% respectively. As these only correspond to a respective shift of the Leq of 0.2 dB, we assigned to the façade points at 1991, the exposure data for 2001 for both road traffic and railway noise (Karipidis et al., 2014). The noise assessment procedure was validated by comparison of calculated noise levels with measured levels from the field. For the noise metric Lden, the comparison revealed a mean difference of 1.6 ± 5 dB when taking all measurements into account (Schlatter et al., 2017).

Source-specific day-evening-night noise levels (Lden; with 5 dB and 10 dB penalties for evening and night-time, respectively) were calculated, and participants without substantial source-specific noise exposures were assigned a truncated value of 35 dB for road Lden and 30 dB for railway and 30 dB for aircraft Lden values. In line with our previous studies (Eze et al., 2017a; Eze et al., 2017b; Foraster et al., 2017), these participants without substantial noise exposures were captured in the regression models using a truncation indicator (0 = non-truncated; 1 = truncated). Source-specific Ldens were then energetically summed up (whereby the loudest source dominates this energetic sum) to a composite transportation Lden using the formula:

\[
\text{Transportation Lden} = 10 \log_{10} \left(10^{\frac{\text{Road Lden}}{10}} + 10^{\frac{\text{Railway Lden}}{10}} + 10^{\frac{\text{Aircraft Lden}}{10}} \right)
\]

We used transportation Lden as our main noise exposure measure, and applied source-specific Lden in sensitivity analyses in an attempt to disentangle the source-specific contribution to observed associations, given their different reported characteristics and health effects (Guski et al., 2017; Röösl et al., 2017; van Kempen et al., 2018).

At SAP1, SAP2 and SAP3, participants also responded to a transportation noise annoyance question, “How much are you annoyed by noise from traffic in your home when the windows are open?” with a 0–10 rating scale based on the validated numerical 11-point noise annoyance scale (Fields et al., 2001). We created a categorical variable, not annoyed (noise annoyance ≤ 5) and annoyed (noise annoyance > 5) for descriptive and interaction analyses (Foraster et al., 2016).

2.4. Potential confounders and effect modifiers

Based on plausibility and data availability, we selected the following potential confounders measured at SAP1, SAP2 and SAP3: age (continuous), sex (male/female), formal education (≤ 9 / > 9 years), smoking status (never/former/current) and pack years (continuous), passive smoke exposure (yes/no) and study area. Family history of asthma (yes/no) and presence of atopy (measured as response to at least one of eight inhalant allergens tested by skin-prick tests) were assessed in SAP1, and assigned to respondents at SAP2 and SAP3. Neighbourhood index of socioeconomic position (SEP), a composite score, derived from 2001 census data, and based on education, occupation of household heads, room occupancy and median rents of households (Panczak et al., 2012) was assigned to residential geo-coordinates of participants at SAP1, SAP2 and SAP3. Correlations of individual SEP levels were high across surveys (r > 0.9). Normalized difference vegetation index (NDVI), a satellite-derived indicator of greenness (30 m x 30 m resolution) based on land surface reflectance was calculated for 2014 and assigned to participants’ residential geo-coordinates at SAP1, SAP2 and SAP3 (Vienneau et al., 2017). Correlations of individual NDVI levels of greenness were > 0.9 across surveys.

Nitrogen dioxide (NO2), a marker of traffic-related pollution and a potential confounder of transportation noise (Trettenuet al., 2013) was assigned to participants’ residences at SAP1, SAP2 and SAP3. Annual mean levels of NO2 were modelled for 1993 and 2003 and assigned to SAP1 and SAP2 addresses, respectively. Models were derived by regressing NO2 passive sampler measurements against dispersion model estimates, land-use, traffic, seasonal and climatic variables, with respect adjusted R² of 0.9 and 0.8 (Liu et al., 2012). At SAP3, average biennial (2010/2011) levels of residential NO2 were estimated using area-specific land-use regression models, with adjusted R² of 0.5–0.9 across study areas (Eeftens et al., 2016). Particulate matter with ≤ 10 μm diameter (PM10) was assigned to participants’ residences at SAP1, SAP2 and SAP3 using validated Gaussian dispersion modelling, with various emission inventories, at a spatial scale of 200 m x 200 m. Emission inventories included agriculture, industrial, transport and household emissions, and these models had good PM10 predictions at both traffic and non-traffic sites (FOEN, 2013; Liu et al., 2007). Spearman correlations (r) between NO2 and PM10 were 0.8 across the three surveys. Unlike NO2 which shows a steeper decay with distance from traffic and provides more local contrast, PM has more homogeneous distribution, therefore making NO2 a better marker of near-road traffic-related air pollution (Health Effects Institute, 2010). We therefore applied NO2 as our main marker of potential confounding by air pollution, and applied PM10 towards sensitivity analyses.

For effect modification, we also included age of asthma onset (classified as childhood-onset (< 16) or adult-onset (≥ 16 years) asthma (Siroux et al., 2014)) and obesity (body mass index (BMI) ≥ 30 kg/m²) assessed at SAP1-SAP3. BMI at SAP1 was derived from self-reported weight and height, whereas BMI at SAP2 and SAP3 were derived from objectively-measured weight and height.
Table 2

Characteristics of participants included in the study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SAPALDIA1</th>
<th>SAPALDIA2</th>
<th>SAPALDIA3</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6837</td>
<td>5937</td>
<td>4364</td>
<td></td>
</tr>
<tr>
<td>Categorical variables</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>χ^2-test</td>
</tr>
<tr>
<td>Female</td>
<td>3464 (51)</td>
<td>2995 (50)</td>
<td>2147 (49)</td>
<td>0.29</td>
</tr>
<tr>
<td>Formal education ≤ 9 years</td>
<td>983 (14)</td>
<td>360 (6)</td>
<td>227 (5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Current smokers</td>
<td>2132 (31)</td>
<td>1461 (25)</td>
<td>752 (17)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Exposure to passive smoke</td>
<td>2658 (39)</td>
<td>1472 (25)</td>
<td>558 (13)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Urban area</td>
<td>4418 (65)</td>
<td>3826 (64)</td>
<td>2729 (63)</td>
<td>0.06</td>
</tr>
<tr>
<td>Change of residence</td>
<td>0 (0)</td>
<td>3940 (58)</td>
<td>1763 (37)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults. ANOVA: Analysis of variance. Transportation Lden represents a combination of road, aircraft and railway. For current asthma as outcome in the mutually-adjusted models, we a priori explored modification of effects of transportation Lden and noise annoyance by sex, obesity, atopy, parental asthma, age of asthma onset, urbanicity, transportation Lden (for noise annoyance model) and noise annoyance (for transportation Lden model). We also tested inter-area differences in associations with current asthma, based on the area-specific adjusted R2 of the NO2 models. Adjusted models included age, age-squared, sex, family history of asthma, atopy, educational level, neighbourhood SEP, smoking status and pack years, passive smoke exposure, greenness, NO2, study area, noise truncation indicator and survey. Since both BMI and physical activity which were linked to asthma (Beuther and Sutherland, 2007; Eijkemans et al., 2012) were also recently linked to noise exposure (Foraster et al., 2016; Pyko et al., 2017; Roswall et al., 2017) we excluded them from our main models, and only included BMI, which was available at all surveys, in sensitivity and effect modification analyses. These factors are more likely to be mediators than potential confounders of noise and respiratory health associations, and may therefore constitute over-adjustment when included in the primary adjusted model.

We performed sensitivity analyses which included: a) testing the linearity of observed associations with transportation Lden and noise annoyance by adding squared terms to the adjusted models; b) assessing stability of the adjusted models to additional adjustment for BMI; c) assessing stability of the adjusted models to additional adjustment for PM$_{10}$ as well as replacing NO2 with PM$_{2.5}$; d) exploring for potential selection bias by comparing crude models in the included and excluded participants, as well as comparing models adjusted for variables measured at the level of geo-coordinates e.g. neighbourhood SEP, NO2 levels and NDVI; e) limiting adjusted models of asthma-related symptoms to asthmatic participants, and excluding asthmatic participants on medication; and g) assessing the stability of the adjusted models when limited to only SAP2 and SAP3, with potentially more precise noise exposure estimates.

Using mixed Poisson regression with random intercepts at the level of participants, we assessed longitudinal associations (relative risks (RR) and 95% CI) of incident asthma with transportation Lden and noise annoyance in the same order as in the cross-sectional analyses. These analyses only included participants who did not report asthma in the baseline survey (i.e. 1991 for 2001, and 2001 for 2011). Analyses were also restricted to non-movers, in a further step. Variables used for adjustment were similar to those of the respiratory symptoms models, with the exception that the survey indicator variable had two levels (SAP1 and SAP2). Here, outcomes of SAP2 and SAP3 were regressed against predictor variables of SAP1 and SAP2, respectively. We also performed sensitivity analyses using the previously-described alternative definition of incident asthma, as well as exploring the stability of our adjusted estimates to adjustment for BMI.

All results are presented as odds ratios (OR) or relative risks (RR) and their 95% confidence intervals (CI) per 10 dB difference in Lden and per 1-point difference (on a scale from 0 to 10) in noise annoyance. Results of main associations and interactions were considered statistically significant at alpha values of 0.05 and 0.1 respectively. Analyses were performed with STATA version 14 (STATA Corporation, College Station, TX) and R Studio version 0.99.092 (R Foundation for Statistical Computing, Vienna).

3. Results

3.1. Characteristics of participants

We included 17,138 observations (72%) from 7049 participants, with an average contribution of 2.4 observations per participant. For the incident asthma models, we included 10,657 nested observations (50% non-movers) from 6377 participants, with an average contribution of 1.7 observations per participant.
Prevalent asthma and BMI increased whereas average levels of air pollution, noise exposure and noise annoyance decreased across surveys. Participants tended to move to areas with higher greensness and neighbourhood SEP. While smoking prevalence decreased across surveys, smoking intensity increased among smokers (Table 2). There were no differences between incident asthma at SAP2 (3.3%) and SAP3 (3.4%). The distribution of transportation, road, aircraft and railway Ldens and noise annoyance among included participants are shown in Fig. 1 where road Lden was the predominant source of noise exposure. Transportation Lden was correlated to Road Lden across surveys ($r > 0.9$), and both metrics showed relatively stronger correlation with both noise annoyance ($r_{\text{transportation}} = 0.34$; $r_{\text{road}} = 0.34$) and NO2 ($r_{\text{transportation}} = 0.34$; $r_{\text{road}} = 0.34$) (Supplementary Fig. S3), compared to aircraft and railway Ldens (noise annoyance: $r_{\text{railway}} = 0.10$, $r_{\text{aircraft}} = 0.10$; NO2: $r_{\text{railway}} = 0.18$, $r_{\text{aircraft}} = 0.09$) (Supplementary Tables S1–S4).

Excluded observations were more likely to come from women and persons with less education, higher air pollution and noise exposures, noise annoyance and lower greensness at their homes. Although persons with excluded observations had higher prevalence of asthma risk factors and of most respiratory symptoms, they did not differ in their prevalence and incidence of asthma, from participants whose observations were included (Supplementary Table S5).

Incident asthmatics were more often female, younger, and had higher prevalence of atopy, parental asthma, and respiratory symptoms. They also had higher exposure to NO2 and aircraft noise compared to those without incident asthma. We observed similar patterns in the distribution of variables among non-movers (Supplementary Table S6).

3.2. Transportation noise annoyance and respiratory symptoms

We consistently observed positive significant associations between transportation noise annoyance and respiratory symptoms, which remained unchanged upon adjustment for transportation Lden (Table 3). A 1-point difference in noise annoyance was associated with 3% (95% CI: 1%, 6%) to 7% (95% CI: 4%, 11%) increases in adjusted odds across the nine respiratory symptoms. Adjusted OR for having current asthma was 1.04 (95% CI: 1.01, 1.08) per 1-point difference in noise annoyance (Table 3).

The association between noise annoyance (1-point difference) and current asthma was more pronounced in the obese participants [OR: 1.13 (95% CI: 1.05, 1.22); p-value of interaction: 0.01], non-atopic participants [OR: 1.07 (95% CI: 1.02, 1.11); p-value of interaction: 0.10] and asthmatic participants with adult-onset asthma [OR: 1.06 (95% CI: 0.97, 1.16); p-value of interaction: 0.06]. Although interactions were not significant (p-value ≥ 0.2), we also found stronger and statistically significant associations between noise annoyance and current asthma among women [OR: 1.05 (95% CI: 1.01, 1.09)] and participants living in urban areas [OR: 1.05 (95% CI: 1.02, 1.09)] (Fig. 2).

3.3. Transportation Lden and respiratory symptoms

Associations with transportation (and source-specific) Lden were not statistically significant, and were sensitive to adjustments for confounders, and transportation noise annoyance in the general sample. In adjusted models without noise annoyance, we observed positive associations between transportation Lden (10 dB difference) and chest tightness [OR: 1.11 (95% CI: 1.01, 1.21)] and dyspnoea after exercise [OR: 1.09 (95% CI: 1.01, 1.19)], but these associations became weaker and statistically non-significant [chest tightness, OR: 1.06 (0.97, 1.17); dyspnoea after exercise, OR: 1.04 (95% CI: 0.96, 1.14)] following adjustment for noise annoyance (Table 3).

However, we observed positive associations between transportation Lden and asthma-related symptoms in models limited to asthmatics, independent of NO2 and noise annoyance. Adjusted odds of wheezing, wheezing without cold, wheezing with dyspnoea, chest tightness and dyspnoea after exercise respectively increased by 29% (95% CI: 1%, 65%), 50% (95% CI: 16%, 93%), 29% (95% CI: 1%, 68%), 28% (95% CI: 1%, 63%) and 26% (95% CI: 1%, 56%) per 10 dB increase in transportation Lden. Adjusted odds of having current asthma increased by 33% (95% CI: 2%, 74%) per 10 dB increase in transportation Lden (Table 3). Associations between transportation Lden and current asthma were pronounced in participants who were non-atopic [OR: 1.13 (95% CI: 0.93, 1.37); p-value of interaction: 0.02] or asthmatic participants who reported adult-onset of asthma [OR: 1.90 (95% CI: 1.25, 2.89); p-value of interaction: 0.03]. We observed no sex differences between incident asthma at SAP2 (3.3%) and SAP3 (3.4%).
<table>
<thead>
<tr>
<th>Model</th>
<th>Regular cough/phlegm</th>
<th>Chronic cough/phlegm</th>
<th>Wheezing</th>
<th>Wheezing without cold</th>
<th>Wheezing with dyspnea</th>
<th>Chest tightness</th>
<th>Nocturnal dyspnea</th>
<th>Diurnal dyspnea at rest</th>
<th>Dyspnea after exercise</th>
<th>Current asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>Lden</td>
<td>1.15 (1.07, 1.25)</td>
<td>1.22 (1.06, 1.39)</td>
<td>1.17 (1.06, 1.29)</td>
<td>1.15 (1.01, 1.30)</td>
<td>1.28 (1.12, 1.45)</td>
<td>1.28 (1.18, 1.38)</td>
<td>1.04 (0.91, 1.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise annoyance</td>
<td>1.05 (1.03, 1.06)</td>
<td>1.22 (1.06, 1.39)</td>
<td>1.17 (1.06, 1.29)</td>
<td>1.15 (1.01, 1.30)</td>
<td>1.28 (1.12, 1.45)</td>
<td>1.28 (1.18, 1.38)</td>
<td>1.04 (0.91, 1.19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>Lden</td>
<td>1.00 (0.92, 1.09)</td>
<td>1.28 (1.01, 1.36)</td>
<td>1.04 (0.91, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise annoyance</td>
<td>1.04 (1.02, 1.05)</td>
<td>1.28 (1.01, 1.36)</td>
<td>1.04 (0.91, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td>1.04 (1.01, 1.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>Lden</td>
<td>0.97 (0.89, 1.05)</td>
<td>0.98 (0.86, 1.11)</td>
<td>1.04 (0.92, 1.15)</td>
<td>0.96 (0.85, 1.14)</td>
<td>0.86 (0.75, 1.00)</td>
<td>1.04 (1.01, 1.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise annoyance</td>
<td>1.04 (1.02, 1.05)</td>
<td>0.98 (0.86, 1.11)</td>
<td>1.04 (0.92, 1.15)</td>
<td>0.96 (0.85, 1.14)</td>
<td>0.86 (0.75, 1.00)</td>
<td>1.04 (1.01, 1.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4</td>
<td>Lden</td>
<td>0.95 (0.88, 1.03)</td>
<td>0.92 (0.82, 1.04)</td>
<td>1.03 (0.92, 1.14)</td>
<td>1.00 (0.86, 1.13)</td>
<td>0.94 (0.82, 1.08)</td>
<td>1.04 (0.95, 1.19)</td>
<td>0.98 (0.85, 1.12)</td>
<td>1.02 (0.98, 1.17)</td>
<td></td>
</tr>
<tr>
<td>Noise annoyance</td>
<td>0.95 (0.88, 1.03)</td>
<td>0.92 (0.82, 1.04)</td>
<td>1.03 (0.92, 1.14)</td>
<td>1.00 (0.86, 1.13)</td>
<td>0.94 (0.82, 1.08)</td>
<td>1.04 (0.95, 1.19)</td>
<td>0.98 (0.85, 1.12)</td>
<td>1.02 (0.98, 1.17)</td>
<td>1.03 (0.95, 1.11)</td>
<td></td>
</tr>
<tr>
<td>Model 3 in asthmatic participants</td>
<td>Lden</td>
<td>0.89 (0.66, 1.18)</td>
<td>0.85 (0.62, 1.13)</td>
<td>0.93 (0.72, 1.23)</td>
<td>0.69 (0.46, 1.03)</td>
<td>0.89 (0.65, 1.22)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
</tr>
<tr>
<td>Noise annoyance</td>
<td>1.04 (0.89, 1.20)</td>
<td>0.85 (0.62, 1.13)</td>
<td>0.93 (0.72, 1.23)</td>
<td>0.69 (0.46, 1.03)</td>
<td>0.89 (0.65, 1.22)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
<td>0.94 (0.70, 1.28)</td>
<td></td>
</tr>
</tbody>
</table>

All results per 10 dB of noise exposure and per 1 point of the 11-point noise annoyance scale. Lden (unless specified otherwise) represents a combination of road, aircraft and railway Ldens. Road, aircraft and railway effect estimates are from adjusted multi-noise exposure models. All mixed logistic models were adjusted for survey and random intercepts were placed at the level of the participants. Model 1: Crude; Model 2: Model 1 + age, age-squared, sex, formal education, neighbourhood socio-economic status, atopy, parental asthma, smoking status and pack-years, exposure to passive smoke, study area, residential nitrogen dioxide levels, greenness, noise truncation indicators. Model 3: Model 2 + noise annoyance/Lden; Model 4: Model 3 using source-specific Lden. Current asthma was defined as having doctor-diagnosed asthma and having one of the following in the preceding 12 months: (i) asthma attack or (ii) using asthma medication or (iii) any three of wheezing with dyspnoea, chest tightness, nocturnal dyspnoea, diurnal dyspnoea at rest and dyspnoea after exercise. *P-value < 0.05. †P-value < 0.1.
differences in the association between transportation Lden and current asthma (Fig. 2).

3.4. Sensitivity analyses

Associations of respiratory symptoms with transportation Lden and noise annoyance were stable across sensitivity analyses. Associations between noise annoyance and respiratory symptoms were close to linear, as indicated by positive estimates of the squared terms of noise annoyance. Adjusted estimates of transportation Lden and noise annoyance were stable to additional adjustment for BMI, PM10 and also in models replacing NO2 with PM10. We observed similar unadjusted estimates of associations between the included and excluded participants. We also observed similar estimates of associations between included and excluded participants when we adjusted for covariates defined at the level of geo-coordinates. Estimates of association of Lden and noise annoyance with respiratory symptoms limited to SAP2 and SAP3 were very similar to those reported for SAP1-SAP3 (Supplementary Table S7). Adjusted effect estimates also remained in size, in models limited to asthmatic participants, after excluding those on asthma medication, but became mostly statistically non-significant (Table 3). We did not observe considerable inter-area differences in associations of Lden and noise annoyance on current asthma (Supplementary Table S8).

3.5. Transportation Lden, noise annoyance and incident asthma

We did not observe any associations of incident asthma with transportation Lden and noise annoyance in crude, adjusted and mutually-adjusted models (Table 4). Adjusted relative risks of incident asthma were 0.98 (95% CI: 0.84, 1.14) per 10 dB of transportation Lden and 1.01 (95% CI: 0.97, 1.04) per 1-point difference in noise annoyance. Mutually-adjusted relative risks of incident asthma were 0.97 (95% CI: 0.83, 1.14) per 10 dB of transportation Lden and 1.01 (95% CI: 0.98, 1.04) per 1-point difference in noise annoyance These estimates remained stable upon adjustment for BMI, in models limited to non-movers, and in models using an alternative definition of incident asthma (Table 4).

4. Discussion

To our knowledge, this is the first study examining associations of transportation noise and noise annoyance with both current respiratory and asthma symptoms, as well as with incident asthma in an adult population. Our results showed that noise annoyance was associated with respiratory symptoms and prevalent asthma in a general adult population. Both noise level and annoyance were independently associated with exacerbation of asthma, but not with incidence of asthma,
regardless of air pollution and other respiratory disease risk factors. Associations with noise level and respiratory symptoms were explained to an extent, by noise annoyance, whereas those with annoyance were not explained by noise levels.

Noise levels in our study were comparatively lower than observed in a similar study (Cai et al., 2017), and even further reduced over follow-up. The reduction in transportation noise level could be explained by the increased construction of noise barriers over highways and rail lines since 2000, improvements in the rolling stock of freight trains, reduction and re-routing of aircrafts to reduce night-time exposures in Switzerland (Karipidis et al., 2014). Participants additionally tended to move to quieter areas across surveys. Correspondingly, noise annoyance also reduced, given their positive significant correlations (Supplementary Fig. S3). However, the magnitude of correlation between transportation noise level and annoyance was only modest, implying that noise level may not be the only determining factor for noise annoyance. Interestingly, noise sensitivity was recently shown to be a stronger determinant of noise annoyance than noise level (Sung et al., 2017). Thus, noise annoyance may not only capture noise exposure of participants, but also their noise sensitivity or susceptibility to stressors in general.

Noise annoyance is thought to reflect perceived stress due to noise. Our observation of associations of respiratory symptoms with noise annoyance is not surprising, given that unpleasant emotional states were associated with decline in lung function in both healthy and asthmatic individuals (Ritz and Kullowatz, 2005). In addition, annoyance due to noise exposure may encompass the activation of the Hypothalamic-Pituitary Axis and lead to increased production of stress hormones (Babisch et al., 2001; Recio et al., 2016) and inflammatory processes as a possible pathway to respiratory symptoms. Our finding of associations with noise annoyance, but not noise level in the whole sample agrees with a recent study from the Netherlands where perceived but not modelled noise exposure was associated with respiratory and other health symptoms in adults (Martens et al., 2018). Although the self-reported noise exposure in (Martens et al., 2018) may not directly capture annoyance, people might be more likely to report higher exposures if they are more sensitive or annoyed by noise, regardless of the actual level, thus supporting the comparability of our findings. These therefore suggest that for respiratory symptoms in adults, the perceptive stress pathway with an emotional response might be more relevant than objective noise level, which would relate more to the non-perceptive physiological response (Foraster et al., 2016; Ndrepepa and Twardella, 2011).

Table 4

All results per 10 dB of noise exposure and per 1 point of the 11-point noise annoyance scale. SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults. BMI: body mass index. Lden (unless specified otherwise) represents a combination of road, aircraft and railway day-evening-night noise levels. Road, aircraft and railway effect estimates are from adjusted multi-noise exposure models. All mixed Poisson models were adjusted for survey, and random intercepts were placed at the levels of the participants.

Model 1: Crude model. Model 2: age, age-squared, sex, formal education, neighbourhood socio-economic status, atopy, parental asthma, smoking status and pack-years, exposure to passive smoke, residential nitrogen dioxide levels, greenness, study area, noise truncation indicators. Model 3: Model 2 + noise annoyance/Lden.

Model 4: Model 3 using source-specific Lden. Analyses combined incident asthma at first and second follow-up with predictor variables from baseline and first follow-up surveys respectively.

* Incident asthma excluding from the controls, participants who reported having any three of (i) wheezing with dyspnoea, (ii) chest tightness on waking up, (iii) nocturnal dyspnoea, (iv) diurnal dyspnoea at rest or (v) dyspnoea following exercise, but did not report doctor-diagnosed asthma at both baseline and follow-up study time points.
to incident adult asthma (Korkeila et al., 2012; Loerbroks et al., 2009; Loerbroks et al., 2016; Rod et al., 2012), our results do not support an association between noise annoyance and incident asthma. This might be due to the low incident asthma rate in our study, or because both noise and annoyance might not play a role in the development of asthma among adults. More studies are needed to confirm and better understand these findings.

Strengths of our study include its novelty in concurrently investigating the relationship of transportation noise exposure and annoyance with respiratory health, particularly taking into account concurrent exposure to air pollution. This study is also comprehensive in consideration of respiratory symptoms as well as risk of adult asthma, using multiple measurements, in a cohort followed for about 20 years. We had composite and high-quality individually-assigned long-term noise exposure variables covering the main transportation noise sources, and could do several sensitivity analyses enabled by the detailed phenotypic and exposure characteristics of the SAPALDIA study population. We could control for traffic-related air pollution, better captured by NO2 than PM10 in our study. Although both pollutants were correlated ($r = 0.8$), Ldn correlated better with NO2 ($r = 0.34$) than with PM$_{10}$ ($r = 0.20$). The better correlation of NO2, in addition to its exposure misclassification history and based again on the sensitivity analyses, we did not observe classifying the accuracies of buildings and infrastructure geometries. But this misclassification is likely non-differential as evidenced by our observation of similar results in sensitivity analyses limited to the two follow-up surveys with less error in input data. Moreover, we applied detailed individual noise exposure assessment, considering participant mobility history and based again on the sensitivity analyses, we did not observe exposure misclassification due to mobility. We did not have fine particulate matter (PM$_{2.5}$) at the three time-points, which might have stronger confounding respiratory effect than PM$_{10}$,limiting further exploration by this pollutant. But PM$_{2.5}$ was highly correlated with PM$_{10}$ and NO2 both at SAP2 (respective $r = 0.9$ and 0.8) and SAP3 (with PM$_{10}$ (r = 0.20). The better correlation of NO2, in addition to its known decay properties with distance from traffic, made it a better potential confounder of transportation noise in our study. With data from three repeated assessments, we could include a large number of observations, increasing our power to detect associations. Our findings could be generalized to the entire SAPALDIA population since there was no indication of sizable selection bias.

Our study is mainly limited by the low rate of incident asthma. We could not explore the modifying effect of stress or sleep-related variables due to their non-availability across all three surveys. Our noise exposure estimates might have been prone to misclassification due to input data errors such as missing noise barriers and buildings, inaccuracies of buildings and infrastructure geometries. But this misclassification is likely non-differential as evidenced by our observation of similar results in sensitivity analyses limited to the two follow-up surveys with less error in input data. Moreover, we applied detailed individual noise exposure assessment, considering participant mobility history and based again on the sensitivity analyses, we did not observe exposure misclassification due to mobility. We did not have fine particulate matter (PM$_{2.5}$) at the three time-points, which might have stronger confounding respiratory effect than PM$_{10}$, limiting further exploration by this pollutant. But PM$_{2.5}$ was highly correlated with PM$_{10}$ and NO$_2$ both at SAP2 (respective $r = 0.9$ and 0.8) and SAP3 (respective $r = 0.9$ and 0.6) therefore we would expect similar results with consideration of PM$_{2.5}$ in our study. Participants with respiratory problems may have over-reported being annoyed by noise as they might be more susceptible to environmental stressors. In addition, recall bias may have affected the responses to the respiratory symptoms, but we expect this bias to be minimal, especially in asthmatic participants.

Finally, our estimates may also have been affected by residual confounding by unmeasured factors which may influence respiratory symptom or asthma severity such as ozone, temperature, pollen exposure or seasonality and other potential stressors. But susceptibility to these factors is influenced by allergy and genetic factors, therefore our adjustment for atopic status and family history of asthma should have limited residual confounding due to these factors.

5. Conclusion

Our novel findings indicate that noise annoyance may influence the occurrence of respiratory symptoms, and that noise annoyance and noise level, may both independently exacerbate asthma in adults. Our findings suggest that both psychological and physiological noise reactions could impact the respiratory system and therefore could be relevant for asthma management. More studies are therefore needed to confirm these novel findings, as well as to further disentangle the effects of objective and perceived transportation noise exposure on respiratory health.

Acknowledgements

This work was supported by the Swiss National Science Foundation, SNF-SAPALDIA (grants numbers 33CS30-148470/1, 33CSCO-134276/1, 33CS3CO-108796, 324730.135673, 3247BO-104283, 3247BO-104288, 3247BO-104284, 3247-065896, 3100-059302, 3200-052720, 3200-04532, 4026-028099, PMDP129021/1, PMDP3141671/1); SNF-SiRENE (grant number CRSII3_147635) and the Swiss Federal Office for the Environment. SAPALDIA is also supported by the Federal Office of Public Health, the Federal Office of Roads and Transport, the canton’s government of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, Valais, and Zürich, the Swiss Lung League, the canton’s Lung League of Basel Stadt/Basel Landschaft, Geneva, Ticino, Valais, Graubünden and Zurich, Stiftung ehemals Bündner Heilśliitten, SVUA, Freiwillige Akademische Gesellschaft, UBS Wealth Foundation, Taeclris Biotherapeutics GmbH, Abbott Diagnostics, European Commission 018996 (GABIRED), Wellcome Trust WT 084703MA.

Declarations of interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2018.10.006.

References

