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Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep dis-
turbances and seasonal exacerbation. Conversely, chronobiological treatments utilise 
zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and 
manipulations of sleep timing and duration as rapid antidepressant modalities. Although 
sleep deprivation (“wake therapy”) can act within hours, and its mood‐elevating effects 
be maintained by regular morning light administration/medication/earlier sleep, it has 
not entered the regular guidelines for treating affective disorders as a first‐line treat-
ment. The hindrances to using chronotherapeutics may lie in their lack of patentability, 
few sponsors to carry out large multi‐centre trials, non‐reimbursement by medical in-
surance and their perceived difficulty or exotic “alternative” nature. Future use can be 
promoted by new technology (single‐sample phase measurements, phone apps, move-
ment and sleep trackers) that provides ambulatory documentation over long periods 
and feedback to therapist and patient. Light combinations with cognitive behavioural 
therapy and sleep hygiene practice may speed up and also maintain response. The ur-
gent need for new antidepressants should hopefully lead to reconsideration and imple-
mentation of these non‐pharmacological methods, as well as further clinical trials. We 
review the putative neurochemical mechanisms underlying the antidepressant effect of 
sleep deprivation and light therapy, and current knowledge linking clocks and sleep 
with affective disorders: neurotransmitter switching, stress and cortico‐limbic reactiv-
ity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. 
Despite the complexity of multi‐system mechanisms, more insight will lead to fine 
tuning and better application of circadian and sleep‐related treatments of depression.
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1 |  INTRODUCTION

The psychiatrists of yore, well versed in observation if not in 
ways to cure their patients, described in detail the rhythms of 
mood across the day and seasons (Menninger‐Lerchenthal, 
1960), and even the recurrent patterns of depression and 
mania sometimes seemingly linked to lunar phase, a phe-
nomenon that has now actually been documented in certain 
rapid cycling patients (Wehr, 2018). Rhythms have been 
found in a variety of periodic illnesses (Gjessing & Gjessing, 
1961; Richter, 1965), but most clearly in mood disorders 
(Papousek, 1975). Abnormal timing, amplitude, or stability 
of daily rhythms characterise major depression and particu-
larly bipolar illness; clinically, diurnal mood variation and 
early morning awakening, and often seasonal recurrence, are 
part of the diagnostic check list. Sleep disturbances are ubiq-
uitous and not necessarily specific, but specific sleep ma-
nipulations have powerful effects on clinical state. Altered 
sleep–wake cycles may precede a psychotic episode (Wirz‐
Justice, 1995).

2 |  WHERE HAVE WE COME 
FROM?

Historically, the non‐pharmacological treatments for de-
pression have been developed by chance and by hypothesis. 
Without being a comprehensive review, we summarise the 
evidence for circadian and sleep therapies, which have a 
longer tradition than basic neuroscientists usually recognise.

In the late sixties, observation of a depressed patient who 
improved after biking through the night led to a series of stud-
ies replicating the remarkable and rapid antidepressant effect 
of a night without sleep (not necessarily with biking). The 
difficulty of carrying out double‐blind placebo‐controlled 
trials of sleep deprivation (SD) is obvious; however, the ac-
cumulated evidence for this overnight response in severe de-
pression is incontrovertible (Boland et al., 2017; Dallaspezia 
& Benedetti, 2015).

Because it seemed unfair to demand a sleepless night in sleep 
disturbed patients, the name was changed from sleep depriva-
tion to “wake therapy.” Furthermore, to diminish the perceived 
load, comparisons were made with partial sleep deprivation in 
the first or second half of the night to see whether this shorter 
wake period would suffice (the latter was efficacious). Finally, 
a paradigm of shifting sleep earlier, that is, not a sleep depriva-
tion but a modification of the timing of sleep, was postulated, 
under the assumption that the second half of the night was the 
vulnerable phase for depression when asleep (the “internal co-
incidence” hypothesis [Wehr & Wirz‐Justice, 1981]). Phase 
advance of the sleep–wake cycle led to more gradual, but lon-
ger‐lasting mood improvement (Wehr & Wirz‐Justice, 1981).

Thus, even though SD has been known to be antidepres-
sant for nearly fifty years, these procedures have not entered 
treatment guidelines or everyday practice (Kuiper, McLean, 
Fritz, Lampe, & Malhi, 2013; Wirz‐Justice, 1998). In this re-
spect, the paradoxical finding of a questionnaire study in all 
psychiatric hospitals in Austria, Germany and Switzerland is 
instructive (Winkler et al., 2018). Although sleep deprivation 
was known and recommended by 61% of all hospitals, nearly 
two‐thirds of them had not treated a patient with it during the 
last 12 months. The gap between theory and practice is enor-
mous, probably due to the perceived burden of managing the 
night shift to keep patients awake.

The use of light as a therapeutic modality developed out of 
key discoveries in basic circadian rhythm research in the early 
eighties. First, that daylength (photoperiod) was coded by the 
biological clock in the suprachiasmatic nuclei (SCN) into the 
duration signal of nocturnal melatonin secretion, as a mech-
anism for seasonal initiation of behaviours such as hiberna-
tion and reproduction (Kripke, Elliott, Welsh, & Youngstedt, 
2015). Second, that melatonin secretion could be suppressed 
by bright light in humans, which provided a tool for manipu-
lating circadian timing as well as seasonal behaviour (Lewy, 
Wehr, Goodwin, Newsome, & Markey, 1980). This led to the 
(re)discovery of seasonal affective disorder (SAD; Rosenthal 
et al., 1984) and a worldwide series of clinical trials of light 
therapy that established light as the treatment of choice for 
these patients (Partonen & Pandi‐Perumal, 2010). Over the 
years, several trials have extended the use of light to non‐
seasonal depression (e.g., Lam et al., 2016): response usu-
ally required longer treatment than in SAD, but the effect 
size was equal to, if not better, than for antidepressant drugs 
(Al‐Karawi & Jubair, 2016; Penders et al., 2016; Perera et al., 
2016). In addition, light therapy became established in sleep 
medicine for circadian sleep–wake cycle disorders (Campbell 
et al., 1995).

The physiological meaning of melatonin for human sleep 
and the circadian system is still a matter of controversy 
(Li et al., 2019). Melatonin is of interest, not only as the 
gold standard biological marker of internal time, but, ex-
ogenously applied, as a putative zeitgeber, shifting rhythms 
earlier when ingested in the early evening. Melatonin is the 
hormonal signal of darkness and directly induces distal va-
sodilatation and heat loss, the physiological gate to sleep 
onset (Kräuchi, Cajochen, Pache, Flammer, & Wirz‐Justice, 
2006). Thus, in addition to its use to speed up re‐entrain-
ment in jet lag and shift work, melatonin could be a mild 
soporific for many psychiatric sleep problems (Wirz‐Justice 
& Armstrong, 1996). There have been but few studies. 
Investigations of a putative antidepressant effect have been 
negative (the improvement being rather in the sleep than 
mood domain; Hansen, Danielsen, Hageman, Rosenberg, & 
Gogenur, 2014).
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3 |  WHERE ARE WE TODAY?

Sleep deprivation continues to be used in individual clin-
ics, but interest in further research is lacking (Winkler et al., 
2018). Our research unit in Milano appears to be one of the 
very few which has consistently studied the clinical and neu-
robiological effects of sleep deprivation, now for over twenty 
years (Benedetti, Barbini, Colombo, & Smeraldi, 2007). Our 
present knowledge combines information about clock gene 
variants, correlations with symptoms, neurotransmission and 
brain imaging.

In animal models, all the neurotransmitters that have been 
involved in the pathogenetic models of depression are influ-
enced by SD in the same direction as antidepressant drugs. 
(a) SD increases serotonin (5‐HT) neurotransmission (Adrien, 
2002) and the behavioural responsiveness to 5‐HT precursors 
(Santos & Carlini, 1983); it enhances the activity of 5‐HT neu-
rons (Gardner, Fornal, & Jacobs, 1997); it increases extracel-
lular 5‐HT (Lopez‐Rodriguez, Wilson, Maidment, Poland, & 
Engel, 2003) and 5‐HT turnover (Asikainen, Deboer, Porkka‐
Heiskanen, Stenberg, & Tobler, 1995; Cramer, Tagliamonte, 
Tagliamonte, Perez‐Cruet, & Gessa, 1973; Hery, Pujol, Lopez, 
Macon, & Glowinski, 1970); and it reduces the sensitivity 
of 5‐HT‐1A inhibitory autoreceptors (Gardner et al., 1997; 
Maudhuit, Jolas, Chastanet, Hamon, & Adrien, 1996). (b) SD 
also increases synaptic levels of noradrenaline (NA) (Hipolide 
et al., 2005), tyrosine hydroxylase and NA transporter mRNA 
in the locus coeruleus (Basheer, Magner, McCarley, & 
Shiromani, 1998). (c) SD increases dopamine (DA) activity 
and behavioural response to DA agonists (Mogilnicka, 1981; 
Tufik, Lindsey, & Carlini, 1978), with an increase of DA re-
ceptor binding sites during the early stages of SD (following 
12–24 hr awake; Wirz‐Justice et al., 1981) and a subsequent 
subsensitivity after more prolonged wake (Zwicker & Calil, 
1986), suggesting downregulation after prolonged stimulation. 
(d) Following a similar pattern, SD first increases glutamate 
release and then downregulates it (Dash, Douglas, Vyazovskiy, 
Cirelli, & Tononi, 2009), an effect paralleled by a reduction 
of NMDA receptor sensitivity (Novati, Hulshof, Granic, & 
Meerlo, 2012), possibly due to a change in the expression of 
its subunits (Park, Kang, Paik, & Kim, 2012). (e) SD downreg-
ulates the expression of several clock genes, including Ciart, 
Per2, Npas4, Dbp and Rorb, in the anterior cingulate cortex 
(ACC; Orozco‐Solis et al., 2017).

In depressed patients, clinical psychobiology has linked 
these effects with the efficacy of chronotherapeutics. (a) 
Concerning 5‐HT, SD increased the prolactin response 
to intravenous tryptophan infusion, a challenge for 5‐HT 
function (Salomon et al., 1994); its clinical effects are in-
fluenced by genotypes influencing the density of the 5‐
HT transporter (Benedetti, Barbini, Bernasconi, Fulgosi, 
Campori, et al., 2008; Benedetti, Colombo, et al., 2003; 
Benedetti, Serretti, et al., 1999) and of the 5‐HT2A receptor 

(Benedetti, Barbini, Bernasconi, Fulgosi, Colombo, et al., 
2008), with effect sizes similar to those observed for anti-
depressant drugs (Serretti, Benedetti, Zanardi, & Smeraldi, 
2005); (b) Concerning NA, its metabolites 3‐methoxy‐4‐hy-
droxyphenylglycol (MHPG) and MHPG sulphate (Muller, 
Riemann, Berger, & Muller, 1993) increased after SD 
proportionally to severity of depression (Amin, Khalid, & 
Khan, 1980) and clinical response to treatment (Matussek, 
Romisch, & Ackenheil, 1977). (c) Concerning DA, SD de-
creased plasma levels of prolactin, which is inhibited by DA 
agonists (Baumgartner, Riemann, & Berger, 1990; Kasper 
et al., 1988); it decreased D2 receptor occupancy by a radi-
oligand proportional to antidepressant response, thus sug-
gesting an enhanced DA release in responders displacing 
the radioligand (Ebert, Feistel, Kaschka, Barocka, & Pirner, 
1994); its clinical effects are predicted by levels of homovan-
illic acid in the spinal fluid (Gerner, Post, Gillin, & Bunney, 
1979); it increases eye‐blink rate, suggesting DA activation 
in responders (Ebert et al., 1996). Moreover, the clinical ef-
fects of SD are influenced by gene variants affecting the 
efficiency of catechol‐O‐methyltransferase (COMT) in 
clearing NA and DA from the synapse (Benedetti, Barbini, 
et al., 2010), again with effect sizes comparable to those 
observed for response to antidepressant drugs (Benedetti, 
Colombo, Pirovano, Marino, & Smeraldi, 2009; Benedetti, 
Dallaspezia, et al., 2010). (d) Concerning glutamate, the 
decrease of glutamate/glutamine levels in the ACC after 
repeated SD is proportional to the antidepressant response 
(Benedetti, Calabrese, et al., 2009), and gene variants af-
fecting post‐synaptic scaffolding proteins for glutamate‐me-
diated synaptic plasticity influence its efficacy (Benedetti 
et al., 2018). (e) Concerning clock genes, variants of hPER3 
affect efficacy (Dallaspezia et al., 2016).

Light therapy (LT) has expanded in application to other 
neuropsychiatric domains—some examples are to be found 
in studies of bipolar disorder (Benedetti, 2018), borderline 
personality disorder (Bromundt et al., 2013), Parkinson's dis-
ease (Martino, Freelance, & Willis, 2018; Videnovic et al., 
2017), fibromyalgia (Burgess et al., 2017)—and even to in-
ternal medicine, for example, insomnia in cirrhosis (De Rui 
et al., 2015) or post‐kidney transplantation (Burkhalter et al., 
2015), depression in cystic fibrosis patients (Kopp et al., 
2016), post‐stroke (Sondergaard, Jarden, Martiny, Andersen, 
& Bech, 2006) and cancer (Dallaspezia, Cantamessa, & 
Benedetti, 2018). Light probably does not treat the illness per 
se, but it can aid in reducing concomitant symptoms of poor 
sleep and daytime alertness. Important are the stabilising and 
entraining properties of light, as well as direct activating and 
mood enhancing effects.

The discovery of a novel photoreceptor in retinal ganglion 
cells (ipRGCs), containing the photopigment melanopsin 
sensitive to blue wavelength light (Schmidt et al., 2011), ini-
tiated exciting basic research on the non‐visual and emotional 
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effects of light, but also immediately impacted on the design 
of light therapy devices. The original broad‐spectrum white 
light boxes were followed by development and sale of blue 
LED devices without sufficient evidence for greater effi-
cacy (with additional “blue cone danger”). The ipRGCs have 
initiated a veritable revolution in the lighting industry and 
led to complex questions as to what kind of light and how 
much should be given to whom when—to which research 
is not yet able to provide recipe‐like answers. However, the 
norms of indoor lighting are being broadened beyond the vi-
sual system (Lucas et al., 2014), somewhat simplified in the 
formula “human centric lighting.” Today, the flexibility of 
programming LEDs allows artificial lighting to follow the 
arc of changes in daylight, indeed, to develop lighting pat-
terns tailored to the inhabitants of a given building. This has 
enormous implications also for architecture itself, demanding 
more daylight and more naturalistic artificial lighting in a still‐
to‐be‐defined “healthy” combination. Already we know that 
higher daylight availability for hospitalised patients, as ob-
served in east‐facing rooms, or with bigger windows, or with 
hospital beds nearer to windows, has been shown to act indi-
rectly as “light therapy” and to consistently speed up recov-
ery from depression (Beauchemin & Hays, 1996; Benedetti, 
Colombo, Barbini, Campori, & Smeraldi, 2001; Canellas 
et al., 2016; Gbyl et al., 2016). More generally, sunny rooms 
improve outcomes after a first attack of myocardial infarc-
tion (Beauchemin & Hays, 1998); improve sleep in medical 
wards (Bano et al., 2014); and reduce the need of painkillers 
after spinal surgery (Walch et al., 2005). Architects are now 
constructing psychiatric wards or retirement homes using the 
new technology and chronotherapeutic principles (Kallestad, 
Morken, & Langsrud, 2016; Münch et al., 2017). Conversely, 
there is growing awareness of the potential influence of LED 
lighting on mental illness (Bauer et al., 2018).

As found for SD, the antidepressant effects of LT have 
been associated with changes in monoaminergic neuro-
transmission. In patients with non‐seasonal depression and 
in healthy subjects, light augmented blood 5‐HT through-
out the day (Rao et al., 1990), with platelet paroxetine and 
imipramine binding decreasing significantly after treatment 
(Mellerup, Errebo, Molin, Plenge, & Dam, 1993). Light ther-
apy decreased 5‐HT transporter binding by a radioligand in 
anterior cingulate and prefrontal cortex (Tyrer et al., 2016b), 
thus counteracting its excessive winter seasonal increase in 
patients with SAD (Tyrer et al., 2016a). These mechanisms 
are necessary for the antidepressant effect, because both 
rapid tryptophan/5‐HT depletion and catecholamine deple-
tion reverse the antidepressant effect of LT in SAD (Lam 
et al., 1996; Neumeister et al., 1998).

Melatonin, the ideal “natural” soporific (Wirz‐Justice 
& Armstrong, 1996), has only been commercially devel-
oped for age‐related insomnia (in a patented slow release 
formulation, Circadin®); otherwise, it is available over the 

counter in many countries without regard to dosage, for-
mulation, information as to appropriate timing, or control 
over purity or content. The evidence for melatonin as a 
treatment for circadian sleep–wake cycle disturbances in 
blind persons is strong (Quera Salva, Hartley, Leger, & 
Dauvilliers, 2017; Uchiyama & Lockley, 2015); also for 
other visually impaired individuals where light input is 
diminished, melatonin can provide the evening zeitgeber 
signal for sleep onset. Not surprisingly, patented melatonin 
agonists (Tasimelteon® and Ramelteon®) have been more 
stringently studied and approved for treating sleep disorders 
in the blind than melatonin itself. Agomelatine, which acts 
not only on melatonin receptors but also as a 5HT2C antag-
onist, is available as an antidepressant (Williams, McLin, 
Dressman, & Neubauer, 2016).

If melatonin is the signal of darkness to the body, then 
darkness itself may also be neurobiologically active. A few 
studies of the effect of “long nights” (14 hr darkness) on 
rapid cycling or mania (Dallaspezia & Benedetti, 2015) sup-
port the suggestion that bipolar patients are extremely sensi-
tive to the environmental light–dark cycle which can trigger 
or augment symptoms of depression or mania. Following 
the discovery of blue wavelengths as mediating photic in-
formation to the circadian pacemaker and mood centres, it 
was postulated that blocking these wavelengths might also 
be therapeutic in particular situations. Thus, blue‐blocking, 
amber‐coloured sunglasses have been used to treat mania or 
to stop rapid cycling analogous to (and more simple than) the 
long‐night treatment (Henriksen et al., 2016). Although not 
yet widely studied, programs have already been developed 
to modulate the blue‐ish background screens of computers, 
i‐phone devices, or change baby lamps and hospital rooms to 
amber or warm white spectra at night.

3.1 | Combined chronotherapeutics
We have presented these various treatments as single op-
tions. However, more and more trials have used chrono-
therapeutic combinations in order to prevent relapse after 
recovery sleep following sleep deprivation, together with 
lithium in bipolar patients (Baxter, 1985; Baxter et al., 
1986) or antidepressants in unipolar depression (Martiny 
et al., 2012). Continuing ongoing lithium during chrono-
therapeutics leads to sustained remission over months, and 
stable euthymia is then obtained in the majority of patients 
without the need for other psychotropic drugs (Benedetti, 
Barbini, Fulgosi, et al. 2005; Benedetti, Colombo, Barbini, 
Campori, & Smeraldi, 1999; Colombo et al., 2000). 
Lithium not only sustains response to SD, but it enhances it 
as well, probably by overcoming the effect of unfavourable 
genetic predispositions which affect neurotransmission 
(Benedetti, Barbini, Bernasconi, Fulgosi, Campori, et al., 
2008; Benedetti et al., 2012).
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Synergy is documented for SD with effective antidepressant 
drugs, independent of their mechanism of action (Wirz‐Justice, 
Benedetti, & Terman, 2013), and with other chronotherapeu-
tic techniques, such as LT and sleep phase advance. For this 
latter combination, a phase advance of the sleep–wake cycle 
and of the rest–activity rhythms is a correlate of antidepres-
sant response to SD (Benedetti, Dallaspezia, Fulgosi, et al., 
2007). The efficacy of the triple combination of SD, LT and 
sleep phase advance has been tested in multiple clinical set-
tings and ethnic groups, with consistently replicated antide-
pressant effects and similar effect sizes (Benedetti, Barbini, 
et al., 2001; Berger et al., 1997; Echizenya, Suda, Takeshima, 
Inomata, & Shimizu, 2013; Gottlieb & Terman, 2012; Hurd, 
Herrera, Brant, Coombs, & Arzubi, 2019; Sahlem et al., 2014; 
Voderholzer et al., 2003; Wu et al., 2009).

Repetition of SD at short time intervals (every 2–3 days) 
leads to progressively better acute antidepressant effects 
(Benedetti & Colombo, 2011; Suzuki et al., 2018), and SD 
once a week has also been proposed as a prophylactic treat-
ment to sustain response and prevent relapse (Papadimitriou, 
Christodoulou, Katsouyanni, & Stefanis, 1993). In everyday 
clinical settings, the combination of repeated SD, LT and lith-
ium is able to produce sustained antidepressant effects, most 
strikingly in about one‐half of bipolar patients who did not 
respond to several antidepressant drug trials, and who had 
developed hopelessness and suicidality as a consequence of 
their long‐lasting, untreatable depression (Benedetti, Barbini, 
Fulgosi, et al. 2005; Benedetti, Riccaboni, et al., 2014). This 
high rate of efficacy in non‐responders to antidepressants is 
likely to be due to the multiple mechanisms of action of chro-
notherapeutics, as summarised above and further addressed 
in the last part of this review.

4 |  WHAT ARE THE 
PERSPECTIVES?

Chronotherapeutics has been proposed as an experimental 
model to study the biological basis of depressive psychopa-
thology and antidepressant response (Benedetti & Smeraldi, 
2009; Gillin, Buchsbaum, Wu, Clark, & Bunney, 2001). 
Current knowledge points to multiple neurobiological effects 
as responsible for the clinical mood amelioration, suggesting 
a multi‐target mechanism of action. New data allow us to re-
verse‐translate these new insights in neuroscience from mood 
disorders to human physiology.

4.1 | Neurotransmitter switching, stress and 
cortico‐limbic reactivity
Neurotransmitter expression has been considered a con-
stant and immutable aspect of neuronal identity, but re-
cent studies have shown that neurons can re‐specify their 

neurotransmitters (Spitzer, 2012). Exposure to light and 
darkness can trigger this neurotransmitter switching. In 
nocturnal rodents, hypothalamic neurons shift the release 
of neurotransmitters from dopamine to somatostatin during 
long days, and back to dopamine during short days (Dulcis, 
Jamshidi, Leutgeb, & Spitzer, 2013), while neurons in the 
paraventricular nuclei exhibit a similar switching between 
dopamine and glutamate (Meng, Li, Deisseroth, Leutgeb, 
& Spitzer, 2018). In turn, the increased dopamine signalling 
leads to decreased activation of the HPA axis, and to a de-
crease in stress‐related behaviours (Dulcis et al., 2013; Meng 
et al., 2018). In humans and in other diurnal animals, short 
days are associated with depressive‐like behaviours, higher 
behavioural and hormonal responses to stress, and higher 
HPA axis activity (Ashkenazy, Einat, & Kronfeld‐Schor, 
2009; Ikeno, Deats, Soler, Lonstein, & Yan, 2016; Qin et al., 
2015), the latter being a consistently observed phenotype in 
human depression (Pariante & Lightman, 2008).

It can be surmised that neurotransmitter switching could 
provide a core biological underpinning for circadian pref-
erence in diurnal and nocturnal animals and for the anti-
depressant effects of chronotherapeutics. Neuroimaging 
studies provide indirect evidence for the above. In healthy 
humans, exposure to light reduces threat‐related amygdala 
and prefrontal reactivity and dose dependently increases 
amygdala‐prefrontal and intraprefrontal functional cou-
pling (Fisher et al., 2014); it induces a dose‐dependent 
increase in striatal response to risk, paralleling a dose‐de-
pendent increase in risk‐taking (Macoveanu et al., 2016); 
it reduces both conditioned response to fear, and extinc-
tion‐related prefrontal activity, facilitating fear extinction 
and sustaining tolerance to fear re‐conditioning (Yoshiike, 
Honma, Yamada, Kim, & Kuriyama, 2018). These non‐
image forming, direct effects of exposure to light include 
the modulation of cognitive brain function, with wave-
length, duration and intensity of light exposure influencing 
both performance and brain responses to non‐visual cogni-
tive tasks (Vandewalle, Maquet, & Dijk, 2009).

In depressed patients, changes in the metabolism of lim-
bic structures, and in the cortico‐limbic responses to emo-
tional stimuli and to tasks evoking the cognitive generation 
of affect, are the most consistently replicated correlates of 
antidepressant chronotherapeutics. Successful SD consis-
tently normalised the significantly elevated metabolism 
observed in medial prefrontal—anterior cingulate cortex 
(Wu, Buchsbaum, & Bunney, 2001), while the combi-
nation of SD and LT enhanced neural responses to emo-
tional stimuli in prefrontal cortex (Benedetti, Bernasconi 
et al., 2007) and normalised effective connectivity between 
cortico‐limbic structures (Vai et al., 2015), whose ineffi-
cient functional coupling associates with depression, dys-
regulated response to environmental stimuli, and suicide 
(Radaelli et al., 2015).
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These effects have been related to rapid changes in the re-
lease of 5‐HT and of DA (Benedetti & Smeraldi, 2009; Ebert 
& Berger, 1998), which can be taken up and released by the 
same neurons (Zhou et al., 2005), also by volume transmis-
sion outside the synapses (Fuxe et al., 2007). They contin-
uously covariate in the human CSF (Geracioti et al., 1998) 
following a clear circadian and seasonal pattern (Lambert, 
Reid, Kaye, Jennings, & Esler, 2002). These neurons could 
switch between neurotransmitters as a function of exposure 
to light and darkness, and/or of the sleep–wake cycle. Such 
an as yet unexplored mechanism might underlie these rapid 
changes.

Moreover, the recent discovery (Fernandez et al., 2018) 
that separate pathways convey light stimulation of distinct 
ipRGC subpopulations to distinct circuits for hippocampal 
learning and for mood‐emotional regulation (the latter in-
volving a direct functional connectivity between retina and 
the perihabenular nucleus, projecting to the ventral medial 
prefrontal cortex, thus skipping the SCN) opens a brand new 
approach to investigate the three main effects of light: as zeit-
geber, as cognitive enhancer and as mood regulator. In this 
respect, it should also be noted that other brain structures be-
yond the SCN contain central timing mechanisms, including 
the lateral habenula, and project to core structures controlling 
monoaminergic transmission such as the ventral tegmental 
area and the raphé (Mendoza, 2017), thus suggesting a com-
plex interplay, yet to be explored, between clock‐ and non‐
clock effects of light in the brain.

4.2 | Clock genes
At the cellular level, the circadian modulation of RNA ex-
pression and chromatin remodelling occurs on a genomewide 
scale. Genomewide circadian rhythms have been detected, 
regulating the recruitment of RNA polymerase II and histone 
modifications, with the majority of genes bound by circadian 
transcriptional regulators, coactivators and RNAPII being 
expressed, suggesting that gene expression in itself is cor-
related with circadian transcription factor binding (Koike 
et al., 2012). This transcriptional core clock machinery also 
controls the expression of cell‐cycle regulators, while, in 
turn, cell‐cycle proteins affect circadian rhythms of clock 
genes. At the cellular level, a common set of enzymes regu-
lates the post‐translational cell cycle and the circadian clock, 
thus suggesting that the two oscillating systems interact in 
shaping development and fate of all somatic cells (Gaucher, 
Montellier, & Sassone‐Corsi, 2018). Considering the whole 
organism, these molecular rhythms translate into behav-
iour: in healthy humans, the circadian variation of activities 
matches the clock properties of peripheral cells, and the ef-
fects of the humoural regulators of the cells’ circadian period 
are paralleled by effects on rhythmicity of behaviour. For ex-
ample, individual chronotype can be predicted by the period 

of the circadian oscillations in gene expression detected in 
skin fibroblasts (Brown et al., 2008; Pagani et al., 2011). In 
turn, exposure to light can entrain these rhythms by epige-
netic mechanisms, involving global changes in DNA methyl-
ation in the SCN which parallel the entrainment of circadian 
behaviour (Azzi et al., 2014).

Multiple gene variants in the clock machinery have 
been associated with depression (Garbazza & Benedetti, 
2018). Several factors affecting the biological clock, such 
as gene polymorphisms of the core clock machinery or the 
seasonal change of daylight duration, exert a marked influ-
ence on the behaviour of patients affected by mood disor-
ders. Experimental findings suggest that the relationship 
between clock and behaviour can be markedly more apparent 
in patients with mood disorders than in the general popula-
tion (Benedetti & Terman, 2013). Examples from molecu-
lar genetics include the effects of variants of CLOCK and 
hPER3, which can delay or advance the preferred time for 
daily activities and influence homeostatic response to sleep 
loss in a healthy population (Goel, Banks, Mignot, & Dinges, 
2009; Maire et al., 2014; McClung, 2013), but can also in-
fluence onset of illness, recurrence of mood episodes, symp-
tom profile, and illness course and outcome in patients with 
mood disorders (Benedetti, Dallaspezia, Cigala Fulgosi, 
et al. 2007; Benedetti, Radaelli, et al., 2008; Benedetti et al., 
2015; Benedetti, Serretti, et al., 2003; Dallaspezia et al., 
2016, 2011; Serretti et al., 2003; Serretti, Cusin, et al., 2005). 
Examples from human neuroimaging include seasonal varia-
tion of the brain 5‐HT transporter, which is normally higher 
in winter and lower in summer (Praschak‐Rieder, Willeit, 
Wilson, Houle, & Meyer, 2008), but which, in patients with 
SAD, has higher seasonal amplitude (Tyrer et al., 2016a), 
is directly related with the severity of the depressive syn-
drome (Mc Mahon et al., 2016), and is a target for treatment 
(Harrison et al., 2015; Tyrer et al., 2016b).

This specific sensitivity can also be exploited for thera-
peutic purposes (Wirz‐Justice et al., 2013).

Current models of the circadian system suggest that the hi-
erarchical control exerted on circadian rhythms of behaviour 
and physiological functions by the core molecular machinery 
of the SCN (Takahashi, Hong, Ko, & McDearmon, 2008) 
also impacts many mechanisms which contribute to the 
observed behaviour and physiology. A dependence of be-
haviour on clock gene mutations similar to that observed in 
mood disordered patients occurs in rodents in the absence 
of other regulators of circadian rhythmicity, such as mela-
tonin, and is abolished when these regulators are restored 
(Shimomura et al., 2010). Research approaches targeting 
cortical correlates of circadian and homeostatic processes are 
likely to provide new insights on this issue (Muto et al., 2016; 
Vandewalle et al., 2011).

A caveat must, however, be considered. Studies on the role 
of clock gene variants in mood disorders are in their infancy. 
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Though promising, they are mostly unreplicated and have 
been obtained in small samples. There are very few polymor-
phisms, such as the CLOCK ‐3111 T/C, which have been both 
studied in humans and modelled in animals to elucidate their 
neurobiological effects (Ozburn et al., 2016). A continuously 
evolving behavioural modelling of clock gene mutations in 
animals allows to deepen insights on the role of the molecu-
lar clock machinery in mammalian brain functioning (Parekh 
et al., 2018; Timothy et al., 2018), but this kind of evidence 
has not yet been matched with results of large genomewide 
association studies (GWAS) in mood disorders (McCarthy, 
2018). Replication of single gene effects in humans, and 
modelling in animals, is needed before the clinical relevance 
of these gene variants can be assessed and possibly translated 
into clinical psychiatric practice, also anticipating the need 
for reverse‐translational and reverse‐phenotyping approaches 
to identify the role of single gene variants across current psy-
chiatric illness categories (Demkow & Wolanczyk, 2017).

4.3 | Cortical neuroplasticity
According to the synaptic homeostasis hypothesis, plasticity 
processes during wakefulness lead to a net increase of synaptic 
strength in cortical circuits proportional to their engagement 
during learning and experience, whereas synaptic potentia-
tion is followed by a homogeneous reduction in the strength 
of cortical synapses during sleep (Vyazovskiy & Faraguna, 
2015). This sleep‐dependent process is crucial to restore at-
tentional capacity for new learning and goal‐directed behav-
iour during the following wake period (Vyazovskiy, Walton, 
Peirson, & Bannerman, 2017).

There is a wide consensus that sleep loss is detrimental 
to many brain functions and impairs neuroplasticity (Areal, 
Warby, & Mongrain, 2017). In animal models, sleep loss 
has been consistently associated with impaired neurogen-
esis and neuroplasticity, particularly evident in the hippo-
campus, which parallels the deficits in attention, learning, 
memory, emotional reactivity, executive function and deci-
sion making which have been described in humans as well 
(Kreutzmann, Havekes, Abel, & Meerlo, 2015; McCoy & 
Strecker, 2011). The role of adult hippocampal neurogen-
esis in humans is debated (Kempermann et al., 2018), but, 
across species, sleep restriction and disruption affect the ex-
pression of genes related to neuronal plasticity, brain func-
tion, cognition, inflammation, cellular stress, impairment 
of protein translation, metabolic imbalance and thermal de-
regulation (da Costa Souza & Ribeiro, 2015). Clearly, these 
detrimental effects cannot explain the rapid improvement of 
mood‐congruent cognition and neuropsychological function-
ing which has been consistently described in patients after 
therapeutic SD (Baving et al., 1997; Benedetti, Barbini, 
Florita, et al., 2005). However, when modelling in animals 
the same repeated SD protocols used in chronotherapeutics, 

behavioural antidepressant‐like effects and activation are 
observed (Benedetti, Fresi, Maccioni, & Smeraldi, 2008), 
paralleled by an increase of spine densities in granular neu-
rons of the dentate gyrus, and by an increased expression of 
the canonical Wnt signalling gene Wnt7a, of the microglia/
macrophages genes Iba‐1 and chemokine receptors Cx3cR1 
and CxcR4, and of Arc/Arg3.1, thus strongly suggesting that 
chronotherapeutics induces neuroplasticity (Muzio et al., 
2016). Moreover, in mice, ketamine and SD elicit common 
transcriptional responses in the ACC implicating distinct ele-
ments of the circadian clock and processes involved in neuro-
nal plasticity (Orozco‐Solis et al., 2017).

Sleep–wake‐related changes of cortical excitability match 
the pattern of homeostatic synaptic potentiation and down-
scaling (Vyazovskiy, Cirelli, Pfister‐Genskow, Faraguna, & 
Tononi, 2008), thus making it possible to non‐invasively in-
vestigate them in humans by means of combined transcranial 
magnetic stimulation (TMS) and electroencephalography 
(EEG) (Canali, 2014). TMS/EEG confirms the pattern of 
increased cortical excitability/synaptic potentiation during 
wake and after SD, with the expected decreased excitability/
synaptic reduction during recovery sleep in healthy humans 
(Huber et al., 2013); it also documents an interaction of sleep‐
related homeostatic processes and clock‐related circadian 
rhythms in regulating cortical synaptic strength (Chellappa 
et al., 2016; Ly et al., 2016). The increased synaptic strength 
is paralleled by decreased LTP‐like plasticity, possibly due 
to saturation after SD, which is restored after sleep (Kuhn 
et al., 2016). This has been formalised in a novel synaptic 
plasticity model of therapeutic SD in major depression (Wolf 
et al., 2016). Notwithstanding the impairment in neuropsy-
chological tests targeting cortical functions, possibly due to 
saturation and altered signal/noise ratio associated with acute 
imbalance of circadian synaptic homeostasis, these exper-
iments consistently suggest that one night of SD increases 
cortical excitability and synaptic strength in healthy humans. 
Similarly, there is new evidence for neuroplasticity of such 
an extent as to be associated with an increase of prefrontal 
cortical brain volumes detected in structural MRI after SD in 
healthy humans (Elvsashagen et al., 2017).

Up to now, only one study has addressed this question clin-
ically, by studying TMS/EEG in bipolar depressed patients 
before, during and after a course of repeated SD combined 
with LT (Canali et al., 2014). Results showed that cortical ex-
citability did not show sleep‐related changes at baseline, but 
then progressively increased during the antidepressant treat-
ment and as a function of time awake, thus normalising the 
time course of its daily homeostatic variation. Higher values 
differentiated responders from non‐responders at baseline 
and during and after treatment on all measures. These results 
suggest then that synaptic potentiation, and its homeostatic 
fluctuation, plays a specific role in the antidepressant effect 
of chronotherapeutics, also considering that other TMS/EEG 
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measures, targeting the activation of the beta/gamma band un-
related to synaptic homeostasis, remain abnormal and unaf-
fected by successful chronotherapeutics (Canali et al., 2017).

Studies in the field are in its infancy, but provide coher-
ent results. The observation that in patients plasticity‐related 
EEG measures change in the same direction after chronother-
apeutics, ketamine (Duncan et al., 2013) and ECT (Casarotto 
et al., 2013) suggests, however, that rapidly promoting cor-
tical neuroplasticity could be a mechanism common to all 
rapid‐acting antidepressants.

4.4 | Connectomics
Consistent evidence associates behaviour and emotions both 
to cortical activity in multiple regions and to the function 
and integrity of the fibres connecting them (Baird, Colvin, 
Vanhorn, Inati, & Gazzaniga, 2005; Gazzaniga, 1989). The 
circadian timing system and sleep homeostasis influence 
connectivity among brain areas. In healthy controls, the 
functional integration of resting state networks, including 
dorsal attention, default mode, sensorimotor and hippocam-
pal networks, decreases from morning to afternoon, and even 
further following sleep deprivation (Blautzik et al., 2013; 
Hodkinson et al., 2014; Kaufmann et al., 2016; Samann 
et al., 2010). These changes of resting state connectivity are 
reversed by sleep (Kaufmann et al., 2016), and longer sleep 
duration associates with higher cortico‐limbic connectivity 
(Killgore, Schwab, & Weiner, 2012). Moreover, chronotype 
associates with markers of white matter structure and grey 
matter function: extreme early and late chronotypes, com-
pared to intermediate chronotypes, show attenuated dorsolat-
eral prefrontal cortex (DLPFC) activation during an attention 
task (Reske, Rosenberg, Plapp, Kellermann, & Shah, 2015), 
and late chronotypes show reduced fractional anisotropy in 
ACC regions (Rosenberg, Maximov, Reske, Grinberg, & 
Shah, 2014).

Functional connectivity associates with white matter mi-
crostructure (van den Heuvel, Mandl, Luigjes, & Hulshoff 
Pol, 2008), and sleep influences white matter microstructure. 
Sleep promotes myelination and oligodendrocyte precursor 
cell proliferation (Benedetti et al., 2016), enhances transcrip-
tion of genes involved in synthesis and maintenance of mem-
branes and myelin (Cirelli, Gutierrez, & Tononi, 2004) and 
modulates neuronal membrane homeostasis (Baldessarini 
et al., 2013). Moreover, water diffusion along white matter 
tracts changes rapidly in the normal human brain, follow-
ing circadian patterns which are region specific (Jiang et al., 
2014), and could possibly reflect different organisation of the 
extracellular matrix in different brain areas (Marcoli et al., 
2015). Animal models showed that increased convective 
fluxes of interstitial fluid during sleep increased the rate of 
clearance of metabolites from the brain, including β‐amyloid 
(Xie et al., 2013), whereas poor sleep quality in older adults 

was associated with increased brain levels of this dangerous 
metabolite (Spira et al., 2013).

One in vivo study in depressed patients with bipolar disor-
der correlated the duration of nocturnal sleep with diffusion‐
tensor imaging measures of the organisation of myelin and 
axonal structures (Benedetti, Melloni, et al., 2017), associat-
ing sleep loss with signs of disruption in key tracts, contrib-
uting to the functional integrity of the brain which associates 
with mood disorders (Vai, Bollettini, & Benedetti, 2014). This 
suggests that circadian and sleep disruption may contribute to 
impaired connectomics in neuropsychiatric diseases.

Functional connectivity between brain cortical areas is 
widely disrupted in neuropsychiatric disorders and is pro-
posed as a major biological underpinning of emotional 
dysregulation and impaired cognition (Vai et al., 2014). 
Synchronous function among neural networks is ensured by 
myelination of white matter tracts (Lu et al., 2013), and in 
the case of mood disorders and of schizophrenia, abnormal-
ities of diffusion‐tensor imaging measures of white matter 
integrity have been described in cortico‐limbic networks, 
and associated with core psychopathological symptoms, in-
cluding cognitive deficits and affective instability (Benedetti 
et al., 2011; Johnston et al., 2017; Poletti et al., 2015). These 
structural abnormalities are well evident in patients soon at 
the beginning of illness, reflect altered developmental trajec-
tories of anterior grey and white matter during adolescence 
(Najt et al., 2016), and are negatively influenced both by 
common genetic variation underlying risk for mood disorders 
(Whalley et al., 2013) and by exposure to adverse childhood 
experiences (Benedetti, Bollettini, et al., 2014; Poletti et al., 
2018). It is suggested that a reduced integrity of white matter 
tracts could underpin dysfunctions in networks implicated in 
the generation and control of affect and cognition in neuro-
psychiatric disorders, reflecting the interaction of genetic and 
environmental factors (Benedetti & Bollettini, 2014).

This makes brain connectomics a new target for chrono-
therapeutics of depression. Patients with bipolar depression 
show a reduced cortico‐limbic effective connectivity during 
emotional processing (Radaelli et al., 2015), and successful 
antidepressant sleep deprivation increases it in responders 
to treatment, but not in non‐responders (Vai et al., 2015). 
Interestingly, enhanced functional connectivity with higher 
sleep pressure is the opposite of what is observed in healthy 
controls (see above), similar to the opposite effects of sleep 
deprivation on mood in patients with depression (antide-
pressant, and triggering euphoria) and in healthy controls 
(depressogenic).

4.5 | Neuroinflammation
Animal models show that sleep loss associates with meas-
ures of neuroinflammation, such as increased secretion of 
pro‐inflammatory cytokines (Fernandes, Araujo, Tufik, & 
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Andersen, 2017), increased blood–brain barrier permeability 
(Hurtado‐Alvarado et al., 2018) and activation of microglia 
(Wisor, Schmidt, & Clegern, 2011). Animal models also 
suggest that perturbations of microglial function lead to ab-
normal maturation of several brain cellular processes, includ-
ing altered synaptogenesis, synaptic pruning, axonal growth 
and myelination, which result in behavioural abnormalities 
that emerge during the juvenile period (Johnson & Kaffman, 
2018) and that imbalance of inflammatory cytokines in both 
hippocampus and plasma could mediate the detrimental ef-
fect of sleep restriction on memory (Wadhwa et al., 2017).

On the other hand, the immune/inflammatory system is 
needed to maintain sleep homeostasis. Cytokines interact 
with 5‐HT to differentially regulate sleep architecture both 
in normal conditions and during infection, promoting NREM 
sleep (Imeri & Opp, 2009), and are needed for synaptic scal-
ing (Stellwagen & Malenka, 2006). Blocking microglial 
activation and alternatively activating (M2) macrophages re-
duces both spontaneous sleep and the homeostatic increase in 
EEG slow wave activity which is expected after SD (Wisor 
et al., 2011), and which is a core correlate of synaptic po-
tentiation during wake (Rodriguez et al., 2016), and the ho-
meostatic sleep rebound after SD (Massie, Boland, Kapas, & 
Szentirmai, 2018). We have also observed microglial activa-
tion as a correlate of the antidepressant‐like effects of SD and 
of SD‐induced increase of hippocampal spine density (Muzio 
et al., 2016). Moreover, the immune system plays a key role 
in resolving neuroinflammation, maintaining brain homeo-
stasis and clearing metabolites from the brain including beta‐
amyloid (Baruch et al., 2015; Baruch & Schwartz, 2013), a 
process that is likely to occur during sleep (Xie et al., 2013).

In patients with mood disorders, a dynamic pattern of T cell 
defects, flares of inflammation, and compensatory increases 
of immune cells subset is observed during their lifetime 
(Drexhage et al., 2011; Snijders et al., 2016). The interpreta-
tion of these findings is still under debate, and several different 
mechanisms have been proposed, including an inborn dysreg-
ulation of the immune system, leading to auto‐inflammatory 
reactivity, stress and exposure to infectious agents (Anderson 
& Maes, 2015; Bergink, Gibney, & Drexhage, 2014; Dantzer, 
2012; Leonard & Maes, 2012; Raison, Capuron, & Miller, 
2006). In adult clinical populations, an increased production 
of pro‐inflammatory cytokines, in the absence of active so-
matic immune diseases, is usually observed in a subgroup 
of patients. These pro‐inflammatory phenotypes have been 
associated with worse outcomes of mood disorders, including 
suicide (Steiner et al., 2013), and with MRI signs of white 
matter disruption (Benedetti et al., 2016), but, on the other 
hand, possibly compensatory increases of certain subpopula-
tions associate with brain integrity (Poletti et al., 2017).

Concerning chronotherapeutics, a study in a small case se-
ries suggests dysregulation of the circadian pattern of release 
of cytokines, correlating with core depressive symptoms 

(Alesci et al., 2005). We observed that pro‐inflammatory 
compounds reflecting an M‐1 like pro‐inflammatory state of 
monocytes/macrophages are associated with a poor response 
to combined antidepressant SD and LT in bipolar depression 
(Benedetti, Poletti, et al., 2017). On the other hand, patients 
with SAD showed significantly higher macrophage activity 
and lower lymphocyte proliferation in winter compared to 
healthy subjects, and effective LT normalised both immune 
functions and depressive symptoms (Song et al., 2015).

These data are clearly not yet sufficient to draw complete 
models, but all suggest that the immune system could play a 
major role in pathogenesis and treatment of depression and 
that sleep and the circadian timing system closely interact 
with it.

5 |  WHAT ARE THE 
HINDRANCES TO USING 
CHRONOTHERAPEUTICS?

One of the main hindrances in acceptance of these chrono-
therapies is the difficulty of carrying out the conventionally 
required double‐blind placebo‐controlled randomised trials 
in large numbers of patients and thus entering the canon (as 
is the convention for new drugs). Firstly, there is little fund-
ing for such research, and secondly, it requires motivation 
and careful instruction for the nursing staff who are the ones 
looking after the patients throughout the night, as well as a 
ward where wake therapy or shifted sleep phase can be incor-
porated without disturbing other patients. And thirdly, clini-
cal research interest has moved from just studying a night 
awake (those psychiatrists who use it are convinced of its 
efficacy) to testing adjunctive methods to maintain the rapid 
response—such as light, antidepressants or lithium, and sleep 
stabilisation. Thus, trials are often different mixes of one to 
three nights wake therapy, combined with a shortened phase 
advance protocol and/or regular morning light treatment, 
added to treatment as usual. This leads to few studies being 
“pure enough” for inclusion in meta‐analyses, and it is meta‐
analyses which provide the accepted basis for task‐force rec-
ommendations by the professional societies.

An important issue is also that of patents. Even though 
“light” was patented in the early days of human light research, 
this patent was questioned as not recognising “prior art” and 
has not been enforced. The widespread manufacture and sales 
of light therapy devices undergo no FDA or equivalent con-
trol apart from electric safety. Some have been registered as 
medical devices and thus state in their brochures “only for 
SAD” or “counter‐indicated in bipolar patients” that has led 
the EU to stringent definitions of use—certainly the opposite 
of that intended by the lighting companies (thereby limiting 
sales) and a legal blockage for clinical research and applica-
tions outside the diagnosis of SAD. This must be changed.
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The natural product melatonin cannot be patented, whereas 
the agonists can, and as a new drug, undergo classical trials 
for efficacy. Given the easy availability of melatonin in drug-
stores as a “vitamin supplement,” there is no financial incen-
tive to develop and test the optimal doses and formulation of 
an efficacious soporific, nor to study the putative combina-
tions of evening melatonin with morning light as a “double 
zeitgeber” pulse treatment for mood and sleep disorders. This 
is a further important research and development field.

Good sunglasses with optimal blue‐blocking characteris-
tics are fortunately available and should be added to the inex-
pensive armamentarium of methods for stabilising sleep and 
circadian timing (e.g., regular use in the evening before sleep).

Chronobiological treatment strategies such as light and 
melatonin require knowing the patient's internal circadian 
time for optimal treatment. Timing of treatment may also be 
important for many sleep disorders. The timing of the dim 
light melatonin onset (DLMO) has been used as the gold 
standard circadian marker over the last decades (needing 
multiple evening saliva or serum samples). In clinical prac-
tice, a chronotype questionnaire such as the Morningness‐
Eveningness Questionnaire (MEQ) may suffice (at a first 
step) to approximate circadian phase, as under normal con-
ditions there is a good correlation of DLMO with chrono-
type (Terman & Terman, 2010). However, given the large 
interindividual variation of circadian timing in healthy sub-
jects, clinical populations may have more scatter, requiring 
DLMO measurement. Yet it is still not known how precise 
(i.e., within what range, e.g., ±2 hr) the timing must be to 
elicit the best clinical response. In patients with SAD, one 
study showed striking differences between early morning and 
late morning light therapy (Terman, Terman, Lo, & Cooper, 
2001), whereas another found no significant relationship be-
tween chronotype (early and late sleepers) and light therapy 
response at a fixed timepoint (8 a.m.) (Knapen, Gordijn, & 
Meesters, 2016).

The politics of a field also play a role—the zeitgeist of 
psychiatry is mainly pharmacological; such non‐drug modal-
ities do not have the financial underpinnings of industry and 
are often relegated to the domain of “alternative treatments” 
(which, paradoxically, is a reason why many patients are pos-
itively attracted to them). In fact, light is the first treatment in 
psychiatry developed from a neurobiological model and not 
a chance finding.

6 |  WHAT NEXT?

First, a somewhat simple but important chronobiological 
concept should be incorporated into everyday psychiatric 
practice—recognising the value of good entrainment of the 
circadian sleep–wake cycle as necessary for psychological 
and behavioural health (Bhattacharjee, 2007; Wirz‐Justice, 

Bromundt, & Cajochen, 2009). Here, we can use light, and/or 
melatonin, regular exercise and mealtimes, sleep stabilisation 
(in other words, increase zeitgeber strength). Cognitive be-
havioural therapy (CBT) for insomnia has entered psychiatric 
practice as a useful tool to emphasise the importance of sleep 
hygiene (e.g., (Sheaves et al., 2018). Such a CBT programme 
focused on sleep or sleep education could be a straightfor-
ward adjunct to other therapies. Additionally, there is a role 
for light as adjunct therapy to foster stable sleep timing that 
has not been sufficiently exploited. And surely light could be 
combined with many other therapeutic approaches (why not 
psychotherapy?). In fact, ensuring regularity of daily sched-
ules is a long‐established behavioural strategy in psychiatry; 
here, we just infer its usefulness within the conceptual frame-
work of synchronising agents for the circadian system.

Second, ambulatory technology (phone apps, movement 
and sleep trackers) will play an increasingly important role in 
inexpensive non‐invasive documentation of circadian sleep–
wake cycles and behaviour over long periods, useful for ther-
apy feedback and patient education. A new generation of 
molecular markers may provide the required individual phase 
information with only a single blood sample (Braun et al., 
2018; Wittenbrink et al., 2018).

Growing dissatisfaction with the present available psycho-
pharmaca and the interest in non‐drug alternatives has already 
led many clinics in Europe to start using light and wake ther-
apy, following the methodological guidelines in the practical 
manual for chronotherapy (Wirz‐Justice et al., 2013). A model 
of rapid implementation has been initiated by the president of 
the Czech Psychiatric Association, who invited us to develop 
a course in theoretical and practical chronotherapeutics for af-
fective disorders, for both psychiatrists and psychiatric nurses, 
leading to a diploma. These individuals now spearhead the use 
of light and wake therapy in clinics across the Czech Republic. 
In parallel, discussions with the medical insurance authorities 
ensured that light therapy was remunerated.

In summary, clocks and sleep have been recognised in 
neuropsychiatry for decades, both as symptoms and as indi-
cators of diagnosis, and have led to novel therapies. We need 
to build on this available knowledge with new large‐N con-
trolled clinical trials to ensure the transfer and acceptance of 
the already broadly studied light and wake therapy as first‐
line treatments of affective disorders.
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