A systematic analysis of mutual effects of transportation noise and air pollution exposure on myocardial infarction mortality: a nationwide cohort study in Switzerland

Harris Hérnitiér1,2†, Danielle Vienneau1,2†, Maria Foraster1,2,3, Ikenna C. Eze1,2, Emmanuel Schaffner1,2, Kees de Hoogh1,2, Laurie Thiesse4,5, Franziska Rudzik4,5, Manuel Habermacher6, Micha Köpfl6, Reto Pieren7, Mark Brink8, Christian Cajochen4,5, Jean Marc Wunderli7, Nicole Probst-Hensch1,2, and Martin Röösl i1,2*; for the SNC study group

1Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002 Basel, Switzerland; 2University of Basel, Petersplatz 1, 4001 Basel, Switzerland; 3Global, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP); Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain; 4Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Klein-Strasse 27, 4032 Basel, Switzerland; 5Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; 6n-sphere AG, Ralfelstrasse 29, CH-8045 Zürich, Switzerland; 7Empa, Laboratory for Acoustics/Noise control, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland; and 8Federal Office for the Environment, Division of Noise and Non-Ionizing Radiation, CH-3003 Bern, Switzerland

Received 21 February 2018; revised 4 May 2018; editorial decision 18 September 2018; accepted 24 September 2018; online publish-ahead-of-print 24 October 2018

See page 604 for the editorial comment on this article (doi: 10.1093/eurheartj/ehy768)

Aims

The present study aimed to disentangle the risk of the three major transportation noise sources—road, railway, and aircraft traffic—and the air pollutants NO2 and PM2.5 on myocardial infarction (MI) mortality in Switzerland based on high quality/fine resolution exposure modelling.

Methods and results

We modelled long-term exposure to outdoor road traffic, railway, and aircraft noise levels, as well as NO2 and PM2.5 concentration for each address of the 4.40 million adults (>30 years) in the Swiss National Cohort (SNC). We investigated the association between transportation noise/air pollution exposure and death due to MI during the follow-up period 2000–08, by adjusting noise [Lden(Road), Lden(Railway), and Lden(Air)] estimates for NO2 and/or PM2.5 and vice versa by multipollutant Cox regression models considering potential confounders. Adjusting noise risk estimates of MI for NO2 and/or PM2.5 did not change the hazard ratios (HRs) per 10 dB increase in road traffic (without air pollution: 1.032, 95% CI: 1.014–1.051, adjusted for NO2 and PM2.5: 1.034, 95% CI: 1.014–1.055), railway traffic (1.020, 95% CI: 1.007–1.033 vs. 1.020, 95% CI: 1.007–1.033), and aircraft traffic noise (1.025, 95% CI: 1.006–1.045 vs. 1.025, 95% CI: 1.005–1.046). Conversely, noise adjusted HRs for air pollutants were lower than corresponding estimates without noise adjustment. Hazard ratio per 10 lgg/m3 increase with and without noise adjustment were 1.024 (1.005–1.043) vs. 0.990 (0.965–1.016) for NO2 and 1.054 (1.013–1.093) vs. 1.019 (0.971–1.071) for PM2.5.

Conclusion

Our study suggests that transportation noise is associated with MI mortality, independent from air pollution. Air pollution studies not adequately adjusting for transportation noise exposure may overestimate the cardiovascular disease burden of air pollution.

Keywords

Noise • Road traffic • Railway • Aircraft • Air pollution • Myocardial infarction • Interaction air pollution and noise • NO2 • PM2.5

* Corresponding author. Tel: +41 61 284 3833, Fax: +41 61 284 8501, Email: martin.roosli@swisstph.ch
† The first two authors contributed equally to this work.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
Introduction

Several meta-analyses have highlighted the link between transportation noise and cardiovascular health. Babisch\(^1\) reported a risk increase of 1.08 (95% CI: 1.04–1.13) for coronary heart disease per 10 dB(A) increase in road traffic noise levels, and positive associations between myocardial infarction (MI) and exposure to road traffic and aircraft noise are also well documented.\(^2\) Air pollution presents similar problems,\(^3\) with some studies demonstrating the need for high-quality exposure modeling.\(^4\) Various studies have investigated the link between co-exposure to air pollution and noise,\(^5\) and thus the potential to elucidate their mutual independent impact on health. Correlations between long-term traffic noise and air pollution ranging from 0.16 to 0.72 were reported in a systematic review.\(^7\) However, Facht et al.\(^8\) found that correlation depends on the spatial unit, with largest ranges seen when comparing across smaller vs. larger spatial units. Finally, correlation between transportation noise and air pollution has been shown to decrease with decreasing measurement error demonstrating the need for high quality exposure modeling.\(^9\) Various studies have investigated the link between co-exposure to air pollution and noise, and CVD mortality.\(^10\) Some report independent noise effects,\(^11\)\(^14\) whereas others suggest attenuation of the noise effect estimates after adjustment for air pollution or vice versa.\(^7\) The independent associations between transportation noise and air pollution at the participants’ residence with MI mortality.

Methods

Study population

The SNC probabilistically links national census data with mortality and emigration records.\(^21\) The data used in our study is based on the 4 December 2000 census and on mortality and emigration data for the period 5 December 2000 to 31 December 2008 and contains 7.28 million observations. We excluded subjects below 30 years of age (n = 2.59 million) as myocardial infarction mortality is very rare in this age group, observations for which residential co-ordinates were missing (n = 0.19 million) or no buffers for the prediction of the air pollution levels could be calculated (n = 0.01 million), subjects living in an institution such as special-care homes (n = 0.25 million), and observations for which the cause of death was imputed (0.03 million) leaving 4.40 million observations for the analyses. The outcome under investigation was primary causes of death from MI (ICD-10: I21–I22). Immediately after death, primary and underlying causes of deaths are recorded by a physician, possibly verified later by autopsy. Eventually, coding of causes is done centrally by the Federal Statistical Office using the German Modification of the ICD-10 system. The SNC was approved by the cantonal ethics boards of Bern and Zurich.

Noise exposure data

Within the framework of the SIRENE project (Short and Long Term Effects of Transportation Noise Exposure), we built a Swiss-wide noise exposure database for the year 2001 which included the three major transportation noise sources in Switzerland: road traffic, railway, and aircraft noise.

The noise exposure database is described in detail elsewhere.\(^25\) In brief, road traffic noise emissions were calculated using sonROAD\(^23\) while propagation was computed via the propagation model of STL-86.\(^24\) For railway noise, the emissions were calculated using sonRAIL\(^25\) and propagation was computed using the Swiss railway noise model SEMIBEL.\(^26\) Aircraft noise exposure estimates were calculated via FLULA\(^27\).

For each building in Switzerland, transportation noise exposure was estimated at pre-defined façade points with a maximum of 3 per façade.\(^27\) For each façade point, we calculated the Lden for each noise source. Using the available geocodes and the information about floor of residence, we linked participants to their respective dwelling unit to assign noise exposure. Exposure was assigned on the basis of the façade point per dwelling unit with the highest Lden value. If information on the floor of residence was not available, we assigned the noise estimates corresponding to the middle floor of the building.

NO2 exposure

The fine scale NO2 model was based on data from cantonal air pollution monitoring authorities of Genève, Vaud, Neuchâtel, Jura, Fribourg, Berne, Basel-City, Basel-Country, Solothurn, Aargau, Ticino, the InLuft and Ostluft network, and the Sapaldia team.\(^28\) The data comprised 9469 data points from 14 days passive measurements collected from 2000 to 2008 at a total of 1834 locations. Missing data was imputed by considering available values from other monitoring sites within the same network based on inverse distance weighting. Subsequently, annual mean concentration for each year and site were calculated and were regressed against various spatial predictors as outlined in Supplementary material online, Table S1.

The prediction for the SNC at residential address was performed for each year, from 2000 to 2008, and then averaged to obtain a long-term NO2 exposure estimate for each participant.

PM2.5 exposure

Daily PM2.5 at 100 m grid cells across Switzerland was predicted for 2003–08 from satellite, land use, and meteorological data as described in detail in de Hoogh et al.\(^29\) We used aerosol optical depth data for the period of 2003–08 at 1 × 1 km resolution and combined it in four-staged modelling approach\(^30\) with various predictors (Supplementary material online) and with PM2.5 ground measurements to refine model resolution to address level. The annual models for the period 2003–08 were used to...
predict PM$_{2.5}$ exposure for each SNC study participant, and the average over the whole period was used as a long-term PM$_{2.5}$ exposure measure in the epidemiological analysis.

Statistical analysis

We analysed the data using the Cox proportional hazards model with age at date of entry into the cohort as the underlying time variable. Participants were followed until emigration, death, or end of follow-up. In order to capture long-term effects of noise and air pollution, exposure values representing the average during the follow-up period as described above were added as static covariates into the model. L$_{den}$ variables were left censored at 35 dB (road traffic) or 30 dB (railway and aircraft noise). Linear hazard ratios (HRs) were computed using multipollutant models adjusted for potential confounders excluding NO$_2$ and PM$_{2.5}$ in a first step, and stepwise including them in a second step. Additional potential confounders included in the model were sex, neighbourhood index of socio-economic position,31 civil status, educational level, nationality, and mother tongue using the categories depicted in Table 1. The latter was selected as it is expected to represent cultural variability in health behaviour in Switzerland.32 To satisfy the Cox proportional hazard assumption, we stratified the baseline hazard function on the following variables; sex, neighbourhood index of socio-economic position, civil status, and education level. Potential multicollinearity between exposure variables in the Cox proportional hazards models was evaluated using the variance inflation factor (VIF).

In addition to linear HRs, we also conducted categorical noise analyses using L$_{den}$(Road) in 5 dB and L$_{den}$(Railway) and L$_{den}$(Air) in 10 dB categories to explore the effect of combined exposures of noise respectively with NO$_2$ and PM$_{2.5}$. All analyses were conducted with the statistical software R and the package ‘survival’.33,34

Results

The cohort contained 4.40 million observations amounting to 33.67 million person-years. There were 19 261 deaths from MI. The characteristics of the study population are displayed in Table 1.

For the NO$_2$ exposure model, R^2 values independently validated with NABEL data for each year, ranged from 0.70 to 0.82 with highest value for the year 2002 (Supplementary material online, Table S2). R^2 values for 10-fold cross-validated elastic net models were ≥ 0.60 and the R^2 values for elastic net combined with kriged residuals were ≥ 0.84 (Supplementary material online, Table S2). For the PM$_{2.5}$
and aircraft noise (0.24) was rather low. The correlation coefficient depicted in Supplementary material online, aircraft traffic (Supplementary material online, 1.020 (1.007–1.033) for railway traffic, and 1.025 (1.006–1.045) for road traffic, (Supplementary material online, Table S4). Correlation between PM2.5 and road (0.27), railway (0.20), and aircraft noise (0.24) was rather low. The correlation coefficient between the noise and the air pollution variables was 0.44, observed between Lden(Road) and NO2 (Table 2). Correlation between PM2.5 and road (0.27), railway (0.20), and aircraft noise (0.24) was rather low. The correlation coefficient between NO2 and PM2.5 was 0.62.

Mean NO2 and PM2.5 exposure levels were 26.1 and 20.2 μg/m3 as depicted in Supplementary material online, Figure S1. The highest Spearman’s correlation coefficient between the noise and the air pollution variables was 0.44, observed between Lden(Road) and NO2 (Table 2). Correlation between PM2.5 and road (0.27), railway (0.20), and aircraft noise (0.24) was rather low. The correlation coefficient between NO2 and PM2.5 was 0.62.

Without considering air pollution exposure, the HR for MI mortality per 10 dB increase in Lden, not adjusted for air pollution (no AP), adjusted for PM2.5 only (PM2.5), adjusted for NO2 only (NO2), and adjusted for PM2.5 and NO2 (PM2.5 + NO2). All models were adjusted for age, sex, neighbourhood index of socio-economic position, civil status, education level, mother tongue, nationality, and the other noise sources.

Discussion

Using fine scale exposure modelling, this study demonstrates that the association between transportation noise and death from MI is stable to air pollution adjustment but not vice versa.

NO2 originates mainly from road traffic while PM2.5 arises from multiple sources including those not related to traffic such as industrial areas, power plants and wood burning and is thus less correlated to road traffic noise than NO2. In multipollutant air pollution studies, the impact of NO2 on mortality was independent from PM2.5. Strikingly many of the air pollution studies have not adjusted for transportation noise and thus noise as confounder in these studies cannot be ruled out, in particular for associations with NO2. In this case, interaction effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Without considering noise exposure, the HR for MI mortality per 10 μg/m3 increase in NO2 was 1.024 (1.005–1.043) and per 10 μg/m3 increase in PM2.5 1.052 (1.013–1.093) (Supplementary material online, Table S7). In this case risk estimates for air pollution exposure unadjusted for noise tended to decrease upon adjustment for all noise sources (Figure 2).

Multicollinearity between noise and air pollution exposure measures was not critical. In fully adjusted multipollutant models VIF was 1.25 for road traffic noise, 1.06 for railway traffic noise, 1.10 for aircraft noise, 1.65 for PM2.5, and 1.92 for NO2.

Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Without considering noise exposure, the HR for MI mortality per 10 μg/m3 increase in NO2 was 1.024 (1.005–1.043) and per 10 μg/m3 increase in PM2.5 1.052 (1.013–1.093) (Supplementary material online, Table S7). In this case risk estimates for air pollution exposure unadjusted for noise tended to decrease upon adjustment for all noise sources (Figure 2).

Multicollinearity between noise and air pollution exposure measures was not critical. In fully adjusted multipollutant models VIF was 1.25 for road traffic noise, 1.06 for railway traffic noise, 1.10 for aircraft noise, 1.65 for PM2.5, and 1.92 for NO2.

Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Without considering noise exposure, the HR for MI mortality per 10 μg/m3 increase in NO2 was 1.024 (1.005–1.043) and per 10 μg/m3 increase in PM2.5 1.052 (1.013–1.093) (Supplementary material online, Table S7). In this case risk estimates for air pollution exposure unadjusted for noise tended to decrease upon adjustment for all noise sources (Figure 2).

Multicollinearity between noise and air pollution exposure measures was not critical. In fully adjusted multipollutant models VIF was 1.25 for road traffic noise, 1.06 for railway traffic noise, 1.10 for aircraft noise, 1.65 for PM2.5, and 1.92 for NO2.

Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Without considering noise exposure, the HR for MI mortality per 10 μg/m3 increase in NO2 was 1.024 (1.005–1.043) and per 10 μg/m3 increase in PM2.5 1.052 (1.013–1.093) (Supplementary material online, Table S7). In this case risk estimates for air pollution exposure unadjusted for noise tended to decrease upon adjustment for all noise sources (Figure 2).

Multicollinearity between noise and air pollution exposure measures was not critical. In fully adjusted multipollutant models VIF was 1.25 for road traffic noise, 1.06 for railway traffic noise, 1.10 for aircraft noise, 1.65 for PM2.5, and 1.92 for NO2.

Synergistic or antagonistic effects between road traffic noise and PM2.5 or NO2 could not be seen in linear-exposure response models including interaction terms. Similarly, testing interactions in categorical models to evaluate potential thresholds for interaction did not reveal any relevant interactions for PM2.5 and NO2. Without considering noise exposure, the HR for MI mortality per 10 μg/m3 increase in NO2 was 1.024 (1.005–1.043) and per 10 μg/m3 increase in PM2.5 1.052 (1.013–1.093) (Supplementary material online, Table S7). In this case risk estimates for air pollution exposure unadjusted for noise tended to decrease upon adjustment for all noise sources (Figure 2).
correlated with PM2.5, and we cannot fully rule out that road traffic and was found to be the most relevant predictor for NO2. However, the place of residence produced improved NO2 exposure estimates including additional factors like road and population density around data, the noise effect models were adjusted for NO2 derived from (0.70–0.82 for all models).

suffer similar bias. Nevertheless, bias cannot be completely excluded the ambient exposure, rather than indoor exposure, and therefore comparable in that both the noise and air pollution estimates reflect the NO2 estimates used here is 0.83. In contrast to our previous analyses we did not consider the intermittency ratio—a measure of noise eventfulness—as an additional noise metric to the Leq.

Our results for noise are in line with most of the criteria for evaluating causality proposed by Hill such as consistency, temporality, biological gradient, plausibility, and coherence, although specificity cannot be expected for the multifactorial disease MI. The effect sizes are small and not of clinical relevance for an individual. Overall, however, public health burden is relevant as many people are exposed to transportation noise and air pollution. A previous health impact assessment for Switzerland concluded that transportation noise and air pollution caused 6000 and 14 000 years of life lost in 2010.

Strength and limitations

The strengths of this study include the large study population and the long follow-up time. We developed a detailed noise exposure model, which allowed for an individual exposure assessment at the address and floor level. Our air pollution models for NO2 and PM2.5 were both based on novel approaches using high resolution input data. Potential selection bias is minimal in this nationwide study based on census data. Finally, both the noise and air pollution models have been validated with independent data. The road traffic noise model for 2011 has been validated using 99 weekly measurements conducted in 2016 yielding an average difference between modelling and measurements of 0.5 dB(A) with a standard deviation of 4.0 dB(A). This good agreement was obtained despite a time lag of five years between modelling and measurements demonstrating stable noise exposure in our study area. Similar stability is also expected for the time between baseline, time at which the noise exposure was assigned, and follow-up of this cohort study.

Though our models are adjusted for socioeconomic status and other demographic variables, we could not adjust for lifestyle and smoking as this information is not available in the SNC. We, therefore, cannot rule out that residual confounding of lifestyle may play a role for our analyses, although no indications for this were seen in a previous SNC noise study. However, the non-significant effect estimates observed for NO2 and PM2.5 after noise adjustment may suffer from residual confounding. In Switzerland, mortality from cardiovascular diseases has been shown to be higher in rural areas, where air

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Adjusted hazard ratios (95% confidence intervals) and number of deaths (N) for PM2.5 and road traffic noise for myocardial infarction in categorical (quartiles) interaction exposure models</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5 (μg/m³)</td>
<td>≤16.9 (main effect), N = 4524</td>
</tr>
<tr>
<td>Road traffic noise (dB)</td>
<td></td>
</tr>
<tr>
<td>≤49.0 (main effect), N = 4249</td>
<td>1.00 (ref), N = 1509</td>
</tr>
<tr>
<td>16.9–18.7, N = 4667</td>
<td>1.07 (0.99–1.15), N = 1198</td>
</tr>
<tr>
<td>18.7–21.1, N = 5056</td>
<td>1.06 (0.98–1.15), N = 987</td>
</tr>
<tr>
<td>>21.1, N = 5014</td>
<td>1.09 (0.98–1.21), N = 555</td>
</tr>
</tbody>
</table>

Cells with interaction terms are shown in italics.

*Age as the underlying time scale and additionally adjusted for sex, neighbourhood index of socio-economic position, civil status, education level, mother tongue, nationality, railway and aircraft noise.

ref, reference.
Conclusion

In this analysis on MI, mutually adjusted with fine-scale noise and air pollution modelling at address level, a consistent exposure-response association between long-term transportation noise exposure and MI mortality was observed. This association was independent from the effects observed for air pollution. Conversely, air pollution effects decreased upon adjustment for transportation noise exposure. Future studies need high quality exposure models for both air pollution and transportation noise to better understand their clinical and public health relevance for cardiovascular disease in various settings.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

We would like to thank all the air pollution authorities from the following cantons and networks for kindly providing the NO2 passive sampler data: Genève, Vaud, Neuchâtel, Jura, Fribourg, Berne, Basel-City, Basel-Country, Solothurn, Aargau, Ticino, the Inluf and Ostluf network, and the Sapaldea team. The members of the Swiss National Cohort Study Group are Matthias Egger (Chairman of the Executive Board), Adrian Spoerri and Marcel Zwahlen (all Bern), Milo Puhani (Chairman of the Scientific Board), Matthias Bopp (both Zurich), Nino Künzli (Basel), Murielle Bochud (Lausanne), and Michel Oris (Geneva).

Funding

This work was supported by the Swiss National Science Foundation (grant nos. CRSI3_147635, 324730_173330, 3347CO-108806, 33CS30_134273, and 33CS30_148415) and the Federal Office for the Environment.

Conflict of interest: none declared.

References
