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ABSTRACT 

Autonomous driving provides new opportunities for the 
use of time during a car ride. One such important scenario 
is working. We conducted a neuroergonomical study to 
compare three configurations of a car interior (based on 
lighting, visual stimulation, sound) regarding their 
potential to support productive work. We assessed 
participants‘ concentration, performance and workload 
with subjective, behavioral and EEG measures while they 
carried out two different concentration tasks during 
simulated autonomous driving. Our results show that a 
configuration with a large-area, bright light with high blue 
components, and reduced visual and auditory stimuli 
promote performance, quality, efficiency, increased 
concentration and lower cognitive workload. Increased 
visual and auditory stimulation paired with linear, darker 
light with very few blue components resulted in lower 
performance, reduced subjective concentration, and higher 
cognitive workload, but did not differ from a normal car 
configuration. Our multi-method approach thus reveals 
possible car interior configurations for an ideal workspace. 
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1 INTRODUCTION AND MOTIVATION 

Technological innovations are accelerating the advance of 
autonomous vehicles, which will fundamentally change the 
way we interact with and use our cars. In the near future, 
people will no longer have to actively engage in a driving 
task and will become passive passengers. Consequently, 
they will have some free time during the car ride that could 
be used for personal activities. Although travelling in 
autonomous vehicles can generally be compared to riding 
a train or a cab, a self-driving car offers some additional 
advantages. It was shown that the main constraint 
inhibiting work in trains and planes is space [24]. A car is 
a restricted, closed space that provides privacy, quietness, 
and enough room for a single passenger and office tasks 
[24]. The space available in a car can even be extended 
when parts of its current interior (e.g. steering equipment) 
become obsolete. At the same time, this opens new 
opportunities for the spatial layout and interior design of 
future cars. The interior could not only be better tailored to 
individual preferences, but also provide features that 
support the activity that the passenger carries out in the car 
such as relaxing, playing a game or working [27, 31]. Since 
our working styles and habits are becoming more flexible 
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and independent of time and location, using the car as an 
office appears to be of special interest. Working during the 
car ride on a business trip, on the way to work or even to 
our holiday destination can increase efficiency, and at the 
same time provide us with an undisturbed environment 
tailored to our own needs. Will cars ultimately become our 
new offices?   
From the design perspective, various propositions have 
been made for how cars can be transformed into functional 
and stylish offices [e.g. 26, 36]. While these designs appear 
to be relevant, car manufactures are currently still rather 
focused on the technical developments of autonomous 
driving than on time usage in self-driving cars. The 
scientific community, on the other hand, has put some 
emphasis on the importance of the concrete design and user 
experience of autonomous driving or, more precisely, the 
experience of being driven by a car. Main research constructs 
are for example level of autonomy, loss of control, 
uncertainty, trust, acceptance, and driving fun [37]. Some 
attempts have also been made to capture people’s visions 
of self-driving cars and activities they might want to 
engage in during a car ride [3, 27, 31, 45]. These studies do, 
however, only identify certain activities and do not examine 
or propose any guidelines on how the design of the car can 
actually facilitate these activities. 
In order to build future autonomous cars that are well 
accepted and can be used with pleasure, it is crucial to take 
a closer look at concrete activities and consider the related 
design options. We therefore conducted a 
neuroergonomical study to investigate how working in the 
car of the future might look like. Specifically, our research 
question is: To what extent do possible car interior 
configurations affect the passenger’s concentration and 
performance levels as well as cognitive workload?  
In order to investigate this research question we let 
passengers work on two different concentration tasks 
during a simulated self-driven car ride. We designed three 
possible interior design configurations and integrated them 
in an autonomous driving simulator: a normal 
configuration, a concentration-focused configuration, and a 
leisure-oriented configuration (see section 4). Each 
configuration consisted of a defined set-up of lighting 
conditions as well as visual and auditory stimulation in the 
car interior.  

1.1 Research Approach  
It has been argued that investigating future scenarios and 
technologies is not straightforward [45]. In a lot of future-
oriented research, interviews and surveys are employed to 
assess people’s attitudes and visions. However, this very 
theoretical and hypothetical approach is limited when it 

comes to examining people’s experiences in or with future 
scenarios. Simulations and virtual environments can be 
used for such evaluations. Hence, the first step to prepare 
our study was to design a driving simulator that allows our 
participants to experience traveling and working in a self-
driving car. The driving simulator also included a technical 
set-up that enabled us to change the interior to let 
participants experience our three different interior 
configuration and to investigate how they influence 
participants’ performance during concentration-
demanding tasks.  
We used a multi-method approach combining subjective, 
behavioral, and neurophysiological insights for 
investigating subjective concentration, performance, and 
cognitive workload. Our multi-method approach allows us 
to examine the influence of different car interior 
configurations from different perspectives. Thus, we can 
obtain comprehensive, holistic answers and increase the 
robustness of our understanding about different aspects of 
the phenomena under investigation [38]. With the multi-
method approach we are hence able to gain a broad as well 
as deep understanding of the factors that affect the 
subjective, behavioral, and neurophysiological state of the 
participant, while offsetting the weaknesses inherent to 
using a unimodal approach.  
While subjective and behavioral measures are well 
established in automotive and working contexts, 
neurophysiological methods are still emerging. Research in 
the area of neuroergonomics has flourished in the past 
decades with the rise of non-invasive and mobile 
neurophysiological measurement techniques. The goal of 
this new research domain is to study aspects of human 
behavior and performance in relation to the interaction 
with technology, working environments, and in operating 
vehicles such as cars by monitoring brain and physiological 
functions [42]. Measuring neurophysiological signals can 
be regarded as a valuable, additional source of information 
about people’s cognitive state and activities to complement 
subjective and performance measures. The most common 
method for measuring brain activity in neuroergonomical 
studies are electroencephalographic (EEG) recordings. EEG 
devices are portable, non-invasive and allow participants to 
be in their natural and comfortable positions while 
performing any given task. [42]. EEG has already been used 
to assess different dimensions of cognitive workload in 
various studies in automotive and work contexts (compare 
section 2), justifying it as our preferred neurophysiological 
method in our multi-method approach.    
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1.2 Contribution 
With this study, we combine the two current research 
domains of autonomous driving and future work. The goal is 
to investigate the feasibility of self-driving cars as 
workplaces and gain insights that help better tailor them to 
the passenger’s needs and activities. In a nutshell, our main 
contributions are: 

 Providing a detailed investigation of the activity of 
working in a self-driving car using a driving simulator 
that is especially designed for this purpose 

 Proposing three potential car interior configurations 
(taking into account lighting, sound, and visual 
stimulation) that can be used to set optimal workplace 
conditions in a self-driving car 

 Conducting a neuroergonomical evaluation of the three 
interior configurations with the goal to provide 
evidence which interior configurations support and 
impede productive and focused work in a self-driving 
car 

 Employing a multi-method approach that combines 
subjective, behavioral and neurophysiological data 
recordings under close-to real autonomous driving 
conditions 

2 RELATED WORK 

Concentration, cognitive workload, and performance are 
common constructs of investigation in automotive 
research. Some studies have already considered a multi-
method approach for their empirical work in this research 
area [43, 52]. With increasing automation in automotive 
contexts, it is increasingly relevant to investigate different 
cognitive states, e.g. attention, task engagement and 
cognitive workload [14, 49, 53, 58]. However, current work 
always focusses on detecting cognitive workload during the 
task of driving and examining the effects of the present 
situation or the environment, e.g. traffic complexity [43] or 
road layout [57]. Neuroergonomical studies have 
researched, for example, the detection of the driver’s 
movement intentions via EEG to support car breaking 
assistance systems, or drowsiness level and mind 
wandering during simulated driving scenarios [2, 8, 22]. To 
our knowledge, the futuristic scenario of working in a self-
driving car has not yet been experimentally investigated.  
Working scenarios in general, and cognitive workload 
assessment in particular, are one of the main areas of 
interest in neuroergonomic research. Studies have 
extensively documented the impact of increasing cognitive 
workload on human behavior and proposed approaches for 
the quantification of cognitive workload with EEG 

measures [4, 7, 17]. Their findings show that cognitive 
workload is a complex multidimensional construct. 
Naturally, cognitive workload increases when an individual 
engages in a task. The cognitive workload level is, however, 
not only dependent on the task itself, but can also be 
influenced by environmental factors. We base our EEG 
measurements on these insights. We hypothesize that the 
cognitive workload of a passenger performing a task in a 
car can be deliberately influenced by changing the interior 
design.  

3 SET-UP OF THE DRIVING SIMULATOR  

Any effects or experience of the passenger during 
autonomous driving can only be investigated safely in a 
simulated setting. The set-up of such driving simulators 
requires careful consideration. In particular, it needs to be 
assured that it is sufficiently immersive to allow the 
transfer of the conclusions acquired in the simulated 
environment to a real-world driving context.  
Besides the simulation of the surrounding landscape, it 
needs to be considered which interior design, and thus 
which vision of autonomous driving, participants should be 
exposed to. 

3.1 Simulation of the Self-driving Mode 
 

 
Figure 1: Set-up of the stationary driving simulator (©Audi AG). 

Figure 1 shows the stationary car mock-up in front of three 
large screens that display the virtual visual simulation of 
the self-driving mode. Since the participants were seated 
face-forward, we made sure that the three screens 
completely covered their field of vision. Thus, there was no 
need to enclose the complete car with screens. On the large 
screens, we displayed the surrounding landscape that 
moved past the car to simulate the impression of driving. 
The setting for the simulation of the self-driving mode was 
a slow car ride with a tempo limit of 30 km/h through a 
cityscape of Barcelona at night time (e.g. a drive home from 
work), as this sets a suitable stage for our interior 
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configurations. Participants were told that the car mock-up 
was a simulation of a fully automated level 5 vehicle. Before 
the experiment started, participants completed a test ride 
through the virtual environment to ensure that they did not 
feel any discomfort or sickness due to the motion of the 
cityscape. None of the participants reported any motion 
sickness.  

3.2 Possible Interior Design Set-up 
In future cars, the new role of the human as a passenger - 
rather than a driver - offers new opportunities to redesign 
the interior layout of the car. Different seating layouts have 
been proposed and investigated, suggesting that passengers 
prefer a spacious, comfortable layout with their seat facing 
forwards [27, 29]. This position enables them to monitor 
the behavior of the car better, thus giving them a feeling of 
security.  
Autonomous driving also requires human-machine 
interface experts to redefine the way we interact with the 
car. Conventional interaction and steering mechanisms 
become redundant. This results in an open design space and 
various opportunities to integrate new emerging 
technologies in the car interior. Some previous work points 
out that people envision future cars not only to be more 
luxurious and comfortable, but also to feature large screens 
[29, 45]. Several possible suggestions of design set-ups have 
been made to alter cars into office environments [26, 36]. 
For the design of our future car we decided to incorporate 
this vision and equipped our car prototype with four 
interactive screens as windows similar to the ones 
proposed by Toyota ([28]). We placed one screen in front 
of the passenger’s seat, two to the front-right and right of 
the passenger and one to the front-left (Figure 1). No 
screens were placed to the left where the entrance to the 
car was located or behind the seat as the passenger would 
not look at this direction during the ride.  
The car prototype had a size of 180x500 cm to resemble a 
rather spacious upper-class car. Due to experimental 
purposes the car neither had a roof nor a door. Instead, two 
LED-Panels (2x Illuxtron MLMC 595X595 with 5950 lm) and 
three LED Stripes were installed above the passenger’s seat 
(on the left and right side 1800 mm x 8 mm, front 1000 mm 
x 8 mm Barthelme Bardolino LLFlex Profile with frosted 
diffuser) to allow us to set-up the specific lighting 
conditions for our three car configurations.  

4 THREE SCENARIOS OF WORKING IN A CAR 
AND RELATED INTERIOR CONFIGURATIONS 

The presented driving simulator formed the basis for the 
design of three car interior configurations that can be used 
to let participants experience three different scenarios of 

working in a self-driving car. For each interior 
configuration, defined concepts for lighting, as well as 
visual and auditory stimulation are proposed. 

4.1 The Normal Configuration 
The normal configuration (NC) is based on the current 
experience of a car ride with no specific lighting, 
monotonous traffic noise from the environment and a few 
visual distractors being displayed on the interactive 
windows.  

4.2  The Concentration-focused Configuration 
The concentration-focused configuration (CC) presents a 
set-up which, based on related research, can be expected to 
have a positive effect on the passenger’s productivity and 
focused working style (Figure 2). In this configuration, 
distractors from the outside were decreased by turning the 
interactive windows opaque and reducing the traffic noise. 
Based on existing light research, we also implemented a 
light set-up that should help people concentrate and be 
more productive (Figure 2).  
 

 
Figure 2: Concentration-focused interior configuration of the 

self-driving car prototype: large-area, bright light with high blue 
components and blurred window screens (©Audi AG). 

 

Previous research has shown that bright light can acutely 
increase attention [10, 19, 47, 61] and improve cognitive 
performance [1, 11, 13, 34]. Furthermore exposure to blue-
enriched light induces enhanced attention, subjective 
alertness and leads to significantly faster reaction times [13, 
56]. Thus, it can be concluded that there is a positive 
correlation between correlated color temperature (CCT) 
and alertness (blue-enriched light with higher CCT results 
in higher alertness and vice versa). The same applies for 
illuminance (higher illuminance results in higher alertness 
and vice versa). This is predominantly caused by the 
recently discovered melanopsin containing retinal ganglion 
cells, photoreceptors that, besides rods and cones, are 
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photosensitive as well [5, 15, 21]. These photosensitive 
ganglion cells project to several nuclei in the brain that are 
responsible for non-image-forming functions and are 
furthermore known to be involved in alertness and 
vigilance [15]. Provencio et al. [46] reported to the Nature 
magazine, that a roughly resolved network of 
photosensitive ganglion cells extends over the entire retina 
of mice. Since those melanopsin containing ganglion cells 
are distributed over large areas of the retina, we assumed 
that the concentration effect of light is greatest when the 
light comes from a large spatial light source, such as shown 
in Figure 2. Therefore, we investigated if spatial light has 
different effects compared to linear light. We hypothesized 
that, if only a small area of the retina is illuminated from a 
linear light with less blue components (as shown in Figure 
3), a weaker non-image-forming effect can be expected 
than by illuminating the entire retina. To do so, two LED-
Panels (2x Illuxtron MLMC 595X595 with 5950 lm), 
installed above the passenger’s seat, provided a large-area, 
bright light (vertical illuminance at the eye was 48 lx) with 
high blue components (CCT was 6070 K).  

4.3 The leisure-oriented configuration  
Studies show that many people imagine the car of the 
future to be designed like a living room [29, 45], which 
inspired us to include a leisure-oriented configuration. We 
were curious to examine whether such an environment 
could also be suitable for working or whether future cars 
will have to provide interior configurations tailored to 
specific activities of the passenger.  
In the leisure-oriented configuration (LC) we designed an 
environment which mirrors notifications and digital 
distractors that we are familiar with from our smartphones. 
These are displayed on the interactive windows 
surrounding the car (see Figure 5). Environmental noises 
are still present in this configuration, while the light is 
optimized to support a relaxing passenger state. In 
congruence with the research reported above this can be 
achieved with a low CCT and low illuminance. 
The lighting setup for the LC therefore features linear, 
darker light with very few blue components and with 4.8 
melanopic lux. The linear light came from the three LED 
Stripes installed above the passenger’s seat (on the left and 
right side 1800 mm x 8 mm, front 1000 mm x 8 mm 
Barthelme Bardolino LLFlex Profile with frosted diffuser). 
They were set to a correlated color temperature of 2630 K 
and a vertical illuminance at the eye of 11 lx (Figure 3).  
 

 
Figure 3: Lighting concept for the leisure-oriented configuration 
of the prototypical self-driving car: linear, darker light with very 

few blue components (©Audi AG). 

5 NEUROERGONOMICAL STUDY 

For our study, we implemented the three interior 
configurations described above in our driving simulator. 
We then designed an experiment to systematically 
investigate to what extent different configurations affect a 
participant’s perceived concentration (questionnaire), 
behavioral performance (reaction time and error rate) and 
cognitive workload (EEG) during two controlled 
concentration tasks.  

5.1 Participants 
We recruited 30 participants (M = 28.5 years, SD = 6.4, 14 
female) for this study. The participants had no habitual 
drug or alcohol consumption, cognitive or psychiatric 
impairments, neurological disorders, metal implants or 
pregnancy. Seven participants were excluded because they 
did not complete the protocol or because no artifact-free 
EEG signal could be obtained, resulting in a total of 23 
participants in the analysis. Participants were monetary 
compensated for their participation and gave their written, 
informed consent before participation. The study protocol 
was approved by the local ethics committee.  

5.2 Experimental Design 
We used a within-subject block design with the three 
experimental blocks representing the three interior car 
configurations. The block order was randomized across 
participants. Each block contained two iterations of the two 
different concentration tasks (see Figure 4), followed by the 
assessment of the subjective concentration. Behavioral task 
performance and cognitive workload were recorded 
continuously throughout the experiment. 
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Figure 4: A) Experimental Procedure. In each of the three blocks one of the interior configurations is applied to the driving simulator. B) 
Experimental Block. Participants had to carry out two iterations of each of the concentration tasks in randomized order 

 

5.3 Concentration Tasks 
To put participants in a scenario of working, they were 
asked to carry out two different concentration tasks 
focusing on the visual and auditory human sensory system.  
Both tasks were taken from psychological research and are 
well suited to induce different concentration levels in the 
participants. Furthermore, they have been used in 
accordance with simultaneous EEG recordings. This gave 
us the opportunity to investigate specifically, the effect of 
different environmental conditions on the concentration 
level of the participants. Based on [25], we used a modified 
version of a combined go/no-go task with a memory task, 
here called visual concentration task (VCT). VCT requires 
people to concentrate on and react to visual stimuli. In a 10-
second memorization phase, participants are shown a 
sequence of four different letters on a screen. Their task is 
to memorize these letters and identify them again in a 
longer sequence of letters presented to them in the 
subsequent testing phase (one letter after the other in 3-
second time intervals). If a letter is shown that they 
recognize from the memorization phase, participants are 
instructed to press a “Yes” button and otherwise a “No” 
button. The visual stimuli were shown on the middle front 
interactive car window and participants’ provided their 
input through a touch panel containing the “Yes” and “No” 
buttons.  
The auditory concentration task (ACT), a modified version 
of the auditory vigilance task presented by Pang and 

colleagues [41], is similar to the VCT, but based on auditory 
stimuli. In the memorization phase, participants first hear a 
sequence of four words (“left”, “up”, “right”, “down”) and 
have to memorize the words and their order. In the testing 
phase, more sequences of the four words in different orders 
are played to them in 2-second intervals. Participants are 
instructed to react to the correct order of words by pressing 
the “Yes” button and by discarding the wrong word order 
by pressing the “No” button. The auditory stimuli were 
played over speakers installed in the car. Participants 
provided their input with the same touch panel used for the 
VCT.   

5.4 Assessing Subjective Concentration, Task 
Performance and Cognitive Workload  
Our multi-method approach is based on the idea of 
combining insights from different sources that complement 
each other, to better understand the passenger’s 
concentration experience and performance for the three 
interior configurations.  
 
5.4.1 Subjective Insights. The subjective concentration 
experience was assessed using a four-item questionnaire 
based on the National Aeronautics and Space 
Administration-Task Load Index (NASA - TLX, [20]). Since 
not all of the items proposed by the NASA-TLX were 
applicable to the tasks and set-up in our study, we only  
included the items “mental effort” and “frustration” in the 
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questionnaire and added the items “concentration” and 
“distraction” (adjusted NASA-TLX; aNASA-TLX). As 
proposed for the original version of the NASA-TLX, the 
items were rated on a seven-point Likert scale ranging from 
“low” to “high”. Given the modification of the scale in the 
context of this study, the second step of pairwise 
comparisons between items proposed by [20] is not 
applicable.  
 
5.4.2 Behavioral Insights. Performance is assessed using 
reaction times (RTs) for both concentration tasks. They 
reflect the time it took participants to press the correct 
button. The error rates (ERs) represent the proportion of 
incorrect responses.  
 
5.4.3 Neurophysiological Insights. EEG measures the 
temporal and frequency characteristics of brain activity by 
monitoring electromagnetic processes, i.e. the 
synchronization processes between populations of 
thousands of neurons at the cortical surface, with 
electrodes placed on the scalp of the participants [40]. 
These synchronization processes are related to different 
measurable oscillatory frequency bands in the brain that 
are associated with different cognitive functions [51]. We 
used the EEG recordings to capture a specific cognitive 
state of the participant that is important within our context: 
the change in working memory load in relation to the 
different car interior configurations. Working memory load 
(also called cognitive work-load) can be understood as the 
amount of mental resources that are used to execute a 
particular task [18, 33] (in our case the VCT and ACT). 
Cognitive workload related changes in the EEG are 
associated with changes in the theta-band power (4-7Hz) at 
frontal brain areas and in the alpha-band power (8-14 Hz) 
at parieto-occipital brain areas [4, 7, 44]. We hypothesized, 
that additional cognitive demands (e.g. increased memory 
load capacities) would be occupied depending on the 
interior configurations while participants perform the two 
different concentration tasks. This cognitive demand can be 
measured by analyzing changes in frontal theta-band and 
parieto-occipital alpha-band EEG power [9-10]. In this 
study we used the workload index as previously introduced 
in [18, 30]. The index is defined by the ratio of frontal (FR) 
theta-band (θ) power divided by parieto-occipital (PO) 
alpha-band (α) power in the EEG: 
 

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑖𝑛𝑑𝑒𝑥 =  
𝐹𝑅 (𝜃)

𝑃𝑂(𝛼)
 

 

This measures the participants mental effort or cognitive 
workload. 

Scalp EEG potentials were recorded (BrainAmp, 
Brainproducts GmbH, Germany) from 32 positions, with 
Ag/AgCl electrodes (actiCAP, Brainproducts GmbH, 
Germany) from: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FCz, 
FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, TP10,P7, 
P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10. The left mastoid was 
used as common reference and EEG was grounded to AFz. 
All impedances were kept below 20 kΩ at the onset of the 
experimental session. EEG data was digitized at 1 kHz, 
high-pass filtered with a time constant of 10 seconds and 
stored for offline data analysis using the Brain Vision 
Recorder Software (Brain Products, Munich, Germany). 

5.5 Experimental Procedure 
Participants were seated in the car seat in the center of the 
driving simulator. At the beginning of the experimental 
procedure, the initial resting state EEG was measured. We 
recorded brain activity for six minutes with alternating 
tasks to “relax with eyes open” (EO; fixation on a cross 
displayed on the middle interactive window screen) and 
“relax with eyes closed” in intervals of 15 seconds [6]. A 
beep indicated the switch between the tasks. This data was 
later used for normalization of the EEG signals for 
statistical comparison between different participants. 
Subsequently, the participants performed a six-minute 
training phase that introduced the participants to the VCT 
and ACT they were to perform during the experiment.  
Participants then completed the three testing blocks. 
Within each block, a visual cue between the concentration 
tasks (180 seconds) indicated the task to perform. 
Furthermore, this gave the participants a short break of 60 
seconds to switch between the different tasks. Between the 
blocks, participants received a short break of 180 seconds 
(see also Figure 4). This accounted for potential sequential 
impact of the changes in light conditions.  

 

 
Figure 5: Experimental set-up: The participant is in the center of 

the prototypical car wearing the mobile EEG device and 
performing the visual concentration task (displayed on the front 
window screen) in the leisure-oriented condition (©Audi AG). 
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5.6 Data Analysis 
Subjective, behavioral, and neurophysiological data were 
analyzed separately. For each of the three data sets, 
individual analyses were conducted for the two 
concentration tasks, the VCT and ACT.  

5.6.1 Subjective Evaluations based on aNASA-TLX. For each 
effort, concentration task, the ratings of the aNASA-TLX 
were analyzed separately. First, the two ratings for each 
item of the aNASA-TLX within one experimental block 
were grouped together and the mean was calculated. The 
obtained values were then entered into four Repeated-
Measures Analyses of Variance (rmANOVA) with post-hoc 
pairwise comparisons, one for each item. Thus, the 
statistical difference between the subjective evaluations of 
mental frustration, concentration and distraction for the 
NC, CC  and LC could be explored for the VCT and ACT, 
respectively. 
 
5.6.2 Behavioral Performance based on RTs and ER. We 
removed all error trials from the data set prior to the 
statistical analysis. Error trials were defined as RTs above 
1500ms and non-response trials. Moreover, all RTs below 
the threshold of 200ms were excluded from further 
analysis, as this is the minimum time needed for stimulus 
perception and motor responses [59]. For each participant, 
the remaining RTs within one experimental block were 
grouped together, the mean was calculated and the effect 
of experimental block on RTs was examined using the 
rmANOVA and post-hoc pairwise comparisons. The same 
process was used to analyze the effect of experimental 
block on error rate. 
 
5.6.3 Cognitive Workload Index based on EEG recordings. 
Further data analysis uses EEG signals that were recorded 
during the blocks of the concentration tasks and the EEG 
data during the EO condition [6] from the initial resting 
state measurement. Several pre-processing steps were 
performed to remove artefacts from the EEG data (e.g. 
environmental noise or other non-brain related processes) 
before analysing the data for differences in the workload 
index. All data analysis was performed with custom written 
or adapted scripts in MATLAB®. 
 
5.6.3.1. EEG pre-processing. For the EEG analysis during the 
concentration tasks, we grouped the EEG data of each 180s 
task block per condition, resulting in a total of 6-minutes 
EEG recording for the VCT and ACT during each of the 
three experimental blocks. The EEG signals were de-
trended, zero-padded and re-referenced to mathematically 
linked mastoids [2]. Next, we band-pass filtered the EEG 

signals between 0.5 to 45 Hz for calculation of oscillatory 
frequency band power. The filtering procedure was 
performed with a first order zero-phase lag FIR filter. The 
whole dataset of 6 minutes per condition was divided into 
non-overlapping epochs of 2 seconds. Epochs were rejected 
when they contained a maximum deviation above 200 µV 
in any of the frontal EEG channels (Fp1, Fp2) accounting 
for heavy eye-movement artifacts superimposed in the EEG 
signals. For the remaining epochs we further performed an 
independent component analysis (ICA) using the logistic 
infomax algorithm as implemented in the EEGlab toolbox 
[16], and removed further cardiac, ocular and muscular 
artifacts. This was done by careful visual inspection of the 
topography, times course and power spectral intensity of 
the ICA components [12, 23].  
Similarly for the EEG data acquired during the resting state 
measurements we grouped each 15s of EO condition 
together, resulting in a data stream of 3 minutes per 
participant. Here again, the EEG signals were de-trended, 
zero-padded and re-referenced to mathematically linked 
mastoids [40]. Next, we band-pass filtered the EEG resting 
state signals between 0.5 to 45 Hz for calculation of 
oscillatory frequency band power, using a first order zero-
phase lag FIR filter. Afterwards the whole dataset of 3 
minutes was divided into non-overlapping epochs of 2s. 
Furthermore, amplitude-based rejection and ICA method 
was used to remove cardiac, ocular movement and 
muscular artifacts, as described in detail above.   
 
5.6.3.2. Estimation of the EEG-based Workload Index. We 
estimated the oscillatory frequency band power of the EEG 
signals by applying the Welch’s method of spectral 
averaging [50] to each valid epoch (artefact-free EEG data). 
This was done separately for the concentration tasks 
during the three different configurations and the resting 
state measurements. Next, for each configuration and 
resting state data we averaged the spectral power across all 
epochs. Since the spectral power of the scalp EEG can vary 
between different participants due to several factors 
(including anatomical, age and gender characteristics or 
unspecific noise characteristics), the EEG data from the 
different conditions has to be normalized before the 
workload index can be calculated. The EEG power for the 
concentration tasks for each interior configuration was 
divided by the power of the resting state measurement per 
participant. Finally, as defined in 5.4.3 we calculated the 
workload index [18, 30] by taking the mean spectral power 
of the θ-band (4-7Hz) from bi-lateral frontal electrodes (Fz, 
F3, F4) divided by the mean spectral power of the α-band 
(8-14Hz) from bi-lateral parietal electrodes (Pz, P3, P4). 
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5.7 Results 
5.7.1 Perceived Concentration. For the VCT the rmANOVA 
revealed statistical effects of interior configuration on the 
items “concentration” (F(2,46) = 4.83, p = .012), “frustration” 
(F(2,46) = 8.05, p = .001) and “distraction” (F(2,46) = 12.05,  p 
< .001). Participants reported higher concentration efforts, 
higher frustration, and higher distraction for the LC than 
the CC. The values for the mean (M) and standard deviation 
(SD) for all blocks and items can be found in Table 1. No 
difference was found between the NC and either of the 
other configurations. In addition, no effect was found for 
the item “mental effort” (F(2,46) = 2.43, p = .10) which 
received ratings between 3 and 4 (out of 7) for all three 
conditions, indicating a medium level of perceived mental 
effort for the VCT.  
 

Table. 1: Participants’ mean ratings for the VCT on the four 
items of the aNASA-TLX for the three car interior 

configurations. 

configuration aNASA-TLX items M (VCT) SD (VCT) 

Normal (NC) concentration 
frustration 
Mental effort 
distraction 

3.56 
2.48 
3.31 
3.00 

1.49 
1.32 
1.66 
1.56 

Leisure-oriented 
(LC) 

concentration 
frustration 
Mental effort 
distraction 

3.99 
2.86 
3.77 
3.69 

1.21 
1.30 
1.46 
1.51 

Concentration-
focussed (CC) 

concentration 
frustration 
Mental effort 
distraction 

3.21 
2.10 
3.27 
2.04 

1.51 
1.12 
1.64 
0.87 

 
For the ACT a statistically significant effect was found for 
“distraction” (F(2,46) = 16.35, p < .001). Distraction was 
rated significantly lower for CC than for NC (p = .02) and 
LC (p < .001). LC received significantly higher distraction 
ratings than NC (p = .003). Table 2 shows the values for M 
and SD for all blocks and items. No effects were found for 
“concentration”, “frustration”, and “mental effort”. For 
these two items, the mean ratings were low to medium for 
all three configurations (all M between values of 2 and 3.6). 
This indicated that participants generally perceived the 
ACT to be little frustrating, to require little mental effort, 
and a medium level of concentration. 
 
5.7.2 Task Performance. The statistical analysis revealed an 
effect of interior configuration (i.e. the experimental block) 
on RTs for the VCT (F(2,42) = 47.53, p < .001). RTs were 
found to be significantly shorter for CC (M = 974.04, SD = 
92.26) than for NC (M = 1059.51, SD = 90.03) and LC (M = 
1084.02, SD = 89.12; all p < .001; see Figure 6). RTs for NC 
and LC did not differ significantly (p > .05).   

For the ACT, the rmANOVA also revealed an effect of 
interior configuration (i.e. the experimental block) on RTs 
for the ACT (F(2,44) = 6.51, p = .003). We found significantly 
lower RTs for CC (M = 648.66, SD = 148.66) as compared to 
NC (M = 699.45, SD = 155.59; p = .43) and LC (M = 716.41, 
SD = 187.40; p = .016; see Figure 7). RTs were slightly lower 
for NC than for LC, but this difference did not reach 
significance.   
For neither the VCT nor the ACT, an effect of interior 
configuration on error rate could be detected (F(2,42) = .85, 
p = .434 and F(2,44) = .30, p = .743, respectively). 
 

Table. 2: Participants’ mean ratings for the ACT on the four 
items of the aNASA-TLX for the three car interior 

configurations. 

configuration aNASA-TLX items M (ACT) SD (ACT) 

Normal (NC) concentration 
frustration 
Mental effort 
distraction 

3.17 
2.19 
2.81 
2.83 

1.43 
1.47 
1.57 
1.32 

Leisure-oriented 
(LC) 

concentration 
frustration 
Mental effort 
distraction 

3.58 
2.25 
3.13 
3.83 

1.44 
1.70 
1.45 
1.88 

Concentration-
focused (CC) 

concentration 
frustration 
Mental effort 
distraction 

2.90 
2.00 
2.63 
1.98 

1.49 
1.44 
1.67 
0.74 

 
5.7.3 Cognitive Workload. For the statistical comparisons of 
the EEG-based workload index we analyzed the results 
with a two-way ANOVA, to test the factors interior 
configuration (NC, LC, and CC) and concentration task 
modality (ACT and VCT) followed by a post-hoc performed 
paired t-test (corrected for multiple comparisons by using 
the Bonferroni correction method). The result for the two-
way ANOVA revealed a main effect for the factor interior 
condition, F(2, 0.2417) = 12,17, p < .0001, but not for the 
factor concentration task modality F(1, 0.2417) = 0,55, p = 
0.45 and for the interaction between these factors F(2, 
0.2417) = 1,32, p = 0.27. 
For both concentration tasks, the participants showed a 
significantly lower workload index when the task was 
performed under the concentration-focused configuration 
as compared to the other two interior configurations (see 
Figure 8; p-values indicate the results from the post-hoc 
performed paired t-test).  

5.8 Discussion 
Our multi-method approach combines subjective, 
behavioral and neurophysiological insights. These insights 
coincide and, combined, reveal a positive effect of the CC 
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Figure 6: Mean RTs for the VCT for the three interior 

configurations. Statistically significant differences with p < .001 
are marked with **. 

 
 
 

 
Figure 7. Mean RTs for the ACT for the three interior 

configurations. Statistically significant differences with p < .05 
are marked with *. 

 
 
 

 
Figure 8: Boxplots representing the EEG-based workload index 
for the three configurations. Statistically significant differences 

with p < .01 are marked with ** and with p < .001 with ***. 

 

on the participants’ concentration, performance and 
cognitive workload levels and uncover a main difference 
between the CC and the LC as well as NC.  
In the CC participants experienced the concentration effort 
and the distraction as assessed by the aNASA-TLX to be 
much lower than in the other two configurations. 
Moreover, their task performance for the two 
concentration tasks was better in the CC in terms of 
quantity (RTs), but not regarding quality (error rates). The 
EEG-based workload index was able to detect variations on 
a neurophysiological level that converge with results from 
the subjective and performance level. Our findings indicate 
a lower need for performance and cognitive load when 
participants performed the concentration tasks during CC 
as compared to LC and NC. The EEG-based index helped us 
to differentiate between physical-based parameters 
(performance-based metrics) that represent an indirect 
measure of the process of mental capacity, and cognitive-
based parameters (EEG-based mental workload index) as a 
direct measure of mental process capacities [35]. Generally, 
task performance and mental workload are inversely 
related to each other. However, the mental resource theory 
by Wickens [60] states that under certain circumstances, 
one can maintain a high level of performance despite high 
mental workload. This is achieved by adopting information 
processing strategies that may direct attention to the 
primary tasks rather than to a secondary task, or as in our 
case environmental distractors. This ambiguity can be 
effectively accounted for by using neuronal measures of 
cognitive load, such as EEG. Furthermore, our results 
highlight that the brain’s working memory resources were 
unaffected by the modality, e.g. visual or auditory human 
sensory system, which cannot be deduced using 
performance based metrics alone. Hence, it can be 
concluded that the effect of interior configuration is quite 
similar for both, the visual and auditory system of the 
participants. Our EEG-based index that takes into account 
the relation between changes of theta-band activity in 
electrodes overlying FR brain regions and alpha-band 
activity in electrodes overlying PO brain regions proved to 
be a valuable measure to objectively quantify cognitive 
workload. It furthermore highlights the involvement of a 
specific fronto-parietal brain network that was consistently 
shown to be involved in workload estimations in other 
studies as well [4, 7, 25, 30, 44].  
Differences between NC and LC could not be found. This 
finding suggests that a more leisure-oriented car interior 
neither supports nor interferes with concentrated working. 
On the other hand, a light, sound, and visual design as 
proposed for the CC can be used to configure a car to 
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deliberately support a productive and concentrated 
working style. It suggests itself that our findings can be put 
into relations with these findings. Offices are not 
necessarily the same size as a car. However, factors that 
inhibit productive work during transportation such as 
limited space, environmental noise and time constraints 
[24] are also valid for office environments. There are 
several studies demonstrating the effect of lighting on 
humans under lab-conditions and possible office settings 
[9, 54]. Light-related studies showed  that light applied 
during night time affects alertness in a dose- and spectrum 
dependent manner. Studies investigating light exposure 
during daytime found inconclusive results. Especially, the 
effect of lighting on the cognitive workload, and more 
specifically on the brain level, has not yet been 
systematically addressed. Our findings are in line with 
results of another recent study that shows that spectral 
properties of light can influence mental effort [32]. 
Furthermore, it demonstrated that this effect occurs after 
15 minutes of light exposure and can be detected with 
cardio-vascular measurements. We thus conclude that our 
findings can be extrapolated not only to other commuting 
workplace conditions but also to office environments and 
extends the existing body of research in this area. We could 
demonstrate how a multi-method approach including EEG 
can be used to better understand the concepts of subjective 
concentration, performance and mental workload and how 
they are affected by certain environmental factors. Still, 
more research needs to be conducted in this direction, 
especially with regards to substantiating the assumptions 
about the connection between lighting and mental 
workload. 
To our best knowledge, comparable studies in automotive 
scenarios are scarce. Taillard et al. [55] presented 
implications of using specific light configurations in a car. 
They could show that interior blue light enhances driving 
performance during night time, thus providing evidence on 
how to transfer findings from lab-settings into real-world 
driving scenarios. Although findings about optimal lighting 
in offices could generally also be applied to an automotive 
setting, there are some differences that might require 
further investigation: In cars there are some factors that 
could potentially produce glare such as the placement of 
lighting devices, brightness and contrast. Other major 
differences are continuously moving visual cues and g-
forces. In our study we explicitly tested moving cues in 
addition to the effect of spatial versus linear light. We 
therefore consider the development of a specific, human-
centered lighting concept for the interior of a self-driving 

car as an important contribution of the present study.  
Still, our study also has some limitations: First, we 
restricted our participants to a young population (mean age 
28.5 years) free from any diseases or other possible 
cognitive and perceptual impairments that might 
compromise their EEG activity, concentration or 
performance level. Hence, it is not known whether similar 
effects on the cognitive resources can be found for an 
elderly population or individuals with compromised 
cognitive or perceptual capabilities.  
Moreover, although the simulated virtual environment 
appeared to be the best choice for our experimental set-up, 
it is, naturally, not identical with a real-world situation. Our 
results were obtained under carefully controlled 
experimental conditions and tasks. Higher variability in 
both neurophysiology and behavior might occur for real-
world working tasks and environments. 
Sadeghian Borojeni et al. [48] investigated the influence of 
motion on take-over-responses (TOR) in highly automated 
vehicles, comparing moving and non-moving driving 
simulators. They could show that motion had an effect on 
take-over-responses (TOR), depending on road contexts. 
However, they did not find an effect on perceived mental 
workload, even for non-driving task performance. Thus, 
the perception of real motion seems to influence situational 
awareness and TOR, but does not necessarily have an 
impact on concentration and non-driving tasks, such as the 
concentration tasks in our study. Our motivation was to 
find empirical evidence that, by manipulating the 
configuration of the interior design, participants 
experience different levels of concentration and workload. 
We present a baseline for future work, which can include 
other possible influences from the external environment, 
e.g. motion.  

6 CONCLUSION AND FUTURE CHALLENGE 

Our neuroergonomical study shows that self-driving cars 
have the potential to serve as a workplace and that the 
interior design of light, sound and visual stimulation can be 
configured to support concentrated working. The multi-
method approach helped us examine possible interior 
design set-ups and to come up with a holistic picture on the 
influences on concentration and workload. Our results are 
cumulative, which increases their robustness and extends 
our understanding of the constructs under investigation.  

We proposed three different variants of interior 
configurations for a workplace in a self-driving car and set-
up a driving simulator. We designed an experimental study 
that allowed us to investigate to what extent these 
configurations support a productive working style. The LC 
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features relaxing light and enables the passenger to receive 
notifications and media content from their mobile phone 
on the interactive window screens of the car, thus 
combining the task of working with a more leisure-oriented 
environment. Our study shows that in this environment, 
subjective concentration, behavioral performance, and 
cognitive workload are comparable to the NC, the regular 
set-up of a car with standard lighting, traffic sound and a 
few visual distractors. The third interior variant (CC) was 
designed to deliberately boost the passenger’s 
concentration and productivity with an activating lighting 
concept, blurred window screens and reduced 
environmental sounds. The results of our study indicate 
that participants did indeed perform better in this set-up, 
while their perceived workload and actual cognitive 
workload were significantly lower than for the other design 
variants. The CC may be used as a guideline on how to 
adjust certain configurations in future autonomous cars in 
order to make them productive workplaces. By 
understanding the relationship between car configuration 
modes and cognitive workload, car manufacturers can 
design future interiors that adequately address human 
cognitive limitations, skills, and needs by providing optimal 
working conditions. 

To arrive at this conclusion, we used a multi-method 
approach combining subjective evaluation based on a 
questionnaire, behavioral measures capturing RTs and 
error rates, and EEG recordings assessing 
neurophysiological processes in the brain. The results of 
our study show that these methods complement each other 
well and, taken together, can provide a holistic picture 
about a participant’s experience and cognitive state in the 
context of working in an automotive setting.  

The study presented in this work should be regarded as a 
first step towards concrete design propositions for using 
cars as mobile offices. We ensured that - although being 
placed in a mock-up car - in all three configurations 
participants had the impression of being in an automated 
car (level 5). Thus, we offer an ecologically valid setup for 
inducing different mental workload and concentration 
levels by manipulating the interior design configuration. 
We based our design variants on the configuration of light, 
sound and visual stimulation. This is, quite obviously, only 
a subset of the interior features that can be configured. 
Future studies can build upon our initial design 
propositions and include other aspects such as temperature 
or seating configuration.  

Interestingly, we found that the leisure-oriented set-up did 
not have a negative effect on participant’s concentration, 

performance or workload. Still, in this study, the display of 
notifications and media on the interactive window screens 
was limited to a medium level. For future studies, it would 
be interesting to investigate the threshold of the amount of 
displayed media content for causing a cognitive overload 
and consequently impeding productive work.  

The next big step for future research would be to take this, 
and similar work out of the lab, and apply it to real-world 
scenarios. In our case, this might entail conducting similar 
investigations with more realistic office tasks and 
ultimately apply our findings to commercial self-driving 
cars. There are also attempts to improve real-time cognitive 
state assessment with neurophysiological measures and 
integrate respective sensors in the car interior [39]. This 
research fuels the design of adaptive in-car interfaces that 
are able to tailor interior configurations to the individual 
passenger based on data recorded during the car ride. For 
working scenarios, EEG-based quantification of workload, 
as demonstrated in our study, may become a valuable 
technique. The idea of a system adapting to the individual 
based on the current cognitive workload requires a robust 
estimation and user model that collects relevant 
information about the user during runtime. Our study 
provides an initial evidence that EEG is a valid approach to 
disentangle context-based influences on user’s mental 
workload capacities. We will therefore promote future 
research on real-time cognitive state assessment based on 
EEG for adaptive lighting conditions as well as visual and 
auditory information displays.  
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