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Abstract

Humans live in a 24-hour environment, in which light and darkness follow a diurnal pattern. Our 

circadian pacemaker, the suprachiasmatic nuclei (SCN) in the hypothalamus, is entrained to the 

24-hour solar day via a pathway from the retina and synchronises our internal biological rhythms. 

Rhythmic variations in ambient illumination impact behaviours such as rest during sleep and 

activity during wakefulness as well as their underlying biological processes. Rather recently, the 

availability of artificial light has substantially changed the light environment, especially during 

evening and night hours. This may increase the risk of developing circadian rhythm sleep–wake 

disorders (CRSWD), which are often caused by a misalignment of endogenous circadian rhythms 

and external light–dark cycles. While the exact relationship between the availability of artificial 

light and CRSWD remains to be established, nocturnal light has been shown to alter circadian 

rhythms and sleep in humans. On the other hand, light can also be used as an effective and 

noninvasive therapeutic option with little to no side effects, to improve sleep,mood and general 

well-being. This article reviews our current state of knowledge regarding the effects of light on 

circadian rhythms, sleep, and mood.
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Anatomical architecture of the circadian system

The central master-clock in mammalian species, including humans, is the suprachiasmatic 

nuclei (SCN), a paired structure in the hypothalamus with a volume just about 0.25 mm3 per 

nucleus (e.g. [45, 57, 84]). Within the mammalian SCN, a molecular oscillator keeps the 

clock oscillating at its normal pace. The basis of this oscillator is two interconnected 

molecular feedback loops of clock gene expression, a detailed description of which is 

beyond the scope of this review though (see [12] for a detailed explanation).

Successful interaction between body and environment however needs more than just a 

central clock; it also requires input pathways relaying information about the environment 

and the body to the SCN to achieve adequate entrainment as well as output pathways 

communicating timing information to the body to synchronise bodily processes with the 

circadian phase (Fig. 1).

The most important zeitgeber (from German, something that “gives time”) reaching the SCN 

is ambient light in the environment. In addition to processing visual stimuli in the 

environment, allowing us to see, the retina carries this photic information via the 

retinohypothalamic tract (RHT) to the SCN. The SCN also receive non-photic information 

from within the body. Here, the involved pathways comprise the geniculohypothalamic tract 

(GHT), which communicates both non-photic and photic information (via the intergeniculate 

leaflet; IGL), and the raphe-hypothalamic tract (raphe-HT). Additionally, SCN activity is 

also modulated by non-photic information via neurotransmitters and hormones such as 

serotonin [54] and melatonin [23], and from peripheral clocks in other tissues (see [55] for 

an overview).

SCN neurons adjust their circadian phase (of neural activity) according to the input of 

ambient light levels and its spectral composition and communicate this information via 

humoral and autonomic nervous system signals to the rest of the body. These output 

pathways are also reciprocal and thus feed information back to the SCN: The SCN-

serotonin-producing raphe nuclei(RN)-SCN loop as well as the SCN-melatonin-producing 

pineal gland-SCN loop (Fig. 1). More specifically, the RN can alter vigilance levels in 

accordance with circadian phase via serotonergic wakefulness-promoting projections to the 

hypothalamus and the cortex [30, 56].

The SCN also projects to the pineal gland, where the sleep-facilitating hormone melatonin is 

produced during the biological night, thereby modulating the diurnal variations between 

wakefulness and sleep [23]. In addition to the pathway between retina and SCN, there is 

recent evidence from animal studies showing that also the habenula in the thalamus is 

innervated by retinal projections [38, 110] which may specifically mediate mood-related 

non-visual effects of light.

Fundamentals of light

To understand the effects of light on the human physiology, it is important to understand 

light. Briefly, light is radiation in a specific range of the electromagnetic spectrum. It is best 

and most completely described by its spectral distribution, which quantifies the amount of 
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energy (or the number of photons) as a function of wavelength (with visible light in the 

wavelength range between 380 and 780 nm).

During the day, light intensities outside can reach illuminances up to 100,000 lx in direct 

sunlight and 25,000 lx in full daylight. Light intensities in closed rooms are considerably 

lower and standard office lighting is only ~500 lx, often lower [37, 81]. The spectrum of 

daylight, which is light from the sun filtered by the atmosphere is relatively broadband in its 

distribution (Fig. 2a). The availability of daylight depends on geographical location and 

season. In the timeframe of human evolution, it is a rather recent development that light can 

be available during all times of day through artificial light. Artificial light allows for 

illuminating indoor and outdoor spaces. It comes in many forms, e.g. incandescent, 

fluorescent, or light-emitting diode (LED) lighting. While light generated by these 

technologies may all appear “white”, the underlying spectra are rather different (Fig. 2b). 

The reason why many different types of spectra might have the same appearance lies in the 

retina. Critically, different spectra, even if they create the same visual impression, may vary 

in their chronobiological effects on the circadian clock.

It is important to keep in mind that there are multiple ways how light is quantified and 

reported in the literature in particular when focussing on its repercussions on human 

physiology. For example, while the absolute spectral distribution of a light is the most 

complete description, many investigators report the illuminance (in lux [lx]), or the 

correlated colour temperature, which is the temperature of a hypothetical black-body 

radiator with the same colour as the light source in question. Unfortunately, until recently, 

there have been no standard quantities that experimenters were asked to report, and 

therefore, summarising the chronobiological and somnological literature on the effects of 

light remains a challenge. Recently, the Commission International de l’Eclairage (CIE), the 

international standard body for quantities related to light, issued a new standard containing a 

reference framework for quantifying the effects of light on non-visual functions [31]. In 

practice, experimenters employing light as an intervention should report, at a minimum, the 

spectral power distribution of the light, as seen from the participant’s point of view. Detailed 

minimum guidelines are given in [83].

Photoreceptors in the retina

In humans, the known effects of light on circadian rhythms and sleep are all, without 

exception, mediated by the retina. The retina is a fine layer of nerve tissue at the back of our 

eyes, containing specialised photoreceptors (Fig. 3a). The so-called cones exist in the 

highest density in the centre of the retina—the fovea. There are three types of cones, 

differing in their preference for light at specific wavelengths (Fig. 3b): The long-wavelength-

sensitive cones (L cones), the medium-wavelength-sensitive cone (M cones) and the short-

wavelength-sensitive cones (S cones). Cones allow us to see colour, spatial detail and motion 

at light levels typical for daytime. Rods, by contrast, are suppressed at daytime light levels 

and only signal at light levels typical for twilight and darker. Rods are absent in the fovea, 

cannot distinguish between different colours and only allow for rudimentary vision.
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Cones and rods are not the only photoreceptors in the retina. A small fraction of secondary 

neurons in the retina—the retinal ganglion cells (RGCs), which integrate information and 

send it to the brain via the optic nerve—express the photopigment melanopsin [62]. 

Melanopsin is a short-wavelength-sensitive pigment with a peak spectral sensitivity near 

around 480 nm [4], rendering some RGCs intrinsically photosensitive [79]. These 

intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate most 

effects of light on the circadian clock. However, ipRGCs are not independent of rod and 

cone input. Rather, they also receive information from these receptors, suggesting that 

ipRGCs indeed act as “integrators of information” regarding the light environment across a 

wide range of wavelengths and light levels. Surprisingly, the input from the S cones into the 

ipRGCs has a negative sign [32]. In humans, this has the paradoxical consequence that 

increases in S cone activation lead to a dilation of the pupil [80, 100], which is also 

controlled by the ipRGCs.

It has long been thought that cones and rods mediate what is typically considered “vision” 

(seeing colour, motion, spatial detail), and that melanopsin mediates the “other”, non-visual 

effects of light, i.e. melatonin suppression, circadian phase shifting, and alertness. However, 

at second sight, this dichotomy breaks down. There is now converging evidence that 

melanopsin signals reach the primary visual cortex (V1) [82], where they may contribute to 

and modulate our visual perception [20, 25, 109].

It is important to keep in mind that the retinal photoreceptors experience an altered version 

of the light relative to the cornea, the front surface of the eye. This is because the eye itself 

contains filters. In the centre of the retina, this includes the macular pigment, which is 

present in the fovea but drops off in the peripheral retina. More importantly for ipRGCs, the 

crystalline lens and ocular media filter out short-wavelength light. This natural “blue-

blocking” filter increases density with increasing age, with less and less short-wavelength 

light reaching the retina.

While the field of vision science has a long history (>150 years) in examining how different 

types of light stimuli are encoded, processed and perceived, we still remain largely in the 

dark about many aspects of the effects of light on the circadian clock. The discovery that the 

production of melatonin is suppressed in humans in response to light dates back to only 

1980 [51]. Teasing apart how the different elements in the retina contribute to the effects of 

light on circadian rhythms, sleep and mood remains an important challenge.

Effects of light on the circadian clock

Two effects of light have been interrogated extensively in human circadian and sleep 

research: (1) the acute suppression of melatonin in response to light exposure and (2) the 

ability of light exposure to shift circadian phase. However, these two effects are not arising 

from a unitary pathway resulting in a direct relationship between melatonin suppression and 

phase shifts. There is now accruing evidence that they may be indeed separable [63]. As a 

consequence, one should not be used as a proxy for the other [106].
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The system mediating melatonin suppression has a spectral sensitivity that is broadly 

consistent with the spectral sensitivity of melanopsin [17, 60, 88]. Similarly, the spectral 

sensitivity of circadian phase shifting shows its maximal effect near the peak spectral 

sensitivity of melanopsin [101]. However, this does not imply that cones and rods may not 

participate in these non-visual effects of light. Indeed, there is evidence that cones do 

contribute, though at a different time scale than the ipRGCs [42].

The effects of light on the phase of the circadian clock depend on the timing of light 

exposure. This is formally summarised in the phase response curve (PRC), which describes 

the amount of phase shift (in minutes and hours) achieved by exposure of light at a given 

circadian phase. Roughly speaking, the effect of morning light is that it advances the clock, 

while evening and night light delays the clock. The human circadian system integrates 

across multiple light exposures as short as five minutes [48], even intermittent bright light 

exposure can shift the circadian phase [43, 66]. It has been shown that under certain 

circumstances, a train of very brief flashes light flashes on the millisecond scale can cause 

circadian phase shifts which are larger than those caused by continuous light [59, 108].

Both melatonin suppression and circadian phase shifts are modulated by the “photic 

history”, i.e. the amount of light seen during the day [27, 44, 77]. The long-term adaptive 

influences of the “spectral diet” in the real world remain an important area of investigation 

[93].

Effects of light on sleep

The human sleep–wake cycle, that is periods of sleep during the night and wakefulness 

during the day, is one of the most prominent examples of a circadian behavioural pattern. It 

results from the interaction between two factors: the circadian drive for wakefulness and the 

homeostatic sleep pressure. The interaction between this circadian “process C” and the 

homeostatic “process S” has been conceptualised in the widely known “two-process model 

of sleep” [13, 15], which accounts for the timing and intensity of sleep in many experimental 

settings. Indeed, in well-controlled studies the circadian pacemaker in the SCN and the sleep 

homeostat have been shown to interact in a fashion designed to allow for consolidated 

periods of wakefulness and sleep during day and night, respectively (e.g. [35]). Specifically, 

the activity of the circadian pacemaker is aligned to counteract the increasing sleep pressure 

resulting from sustained wakefulness during day-time. Likewise, the nocturnal increase in 

circadian sleep tendency counteracts the decrease in sleep propensity resulting from 

accumulated sleep thereby supporting a consolidated phase of nocturnal sleep.

As outlined above, light is the key zeitgeber in the circadian system and interacts with the 

master clock in the SCN via non-image-forming pathways connecting retina and SCN. 

Unsurprisingly, light therefore also affects sleep. Natural daylight at high intensities as 

experienced outside buildings has previously been shown to (1) advance the timing of sleep 

to earlier hours, (2) affect the duration of sleep, and (3) improve sleep quality. More 

precisely, the phase-advancing effects of daylight have for example been reported by 

Roenneberg and colleagues [67] who, using questionnaire data, found that each additional 

hour spent outdoors advanced sleep by ~30 min. Despite light being the strongest zeitgeber, 
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this phase-advance could also result from physical exercise during daytime [102, 105], 

which is often confounded with time spent outdoors. The relative contributions of light and 

physical activity remain to be determined. Moreover, light exposure during the day has also 

been shown to affect sleep duration. Here, shorter daylight exposure and longer nights are 

associated with a longer biological night as indexed by the duration of melatonin secretion, 

and thus longer sleep duration [85, 94, 95], which may also reflect a seasonality effect [104]. 

Likewise, exposure to daylight has been shown to increase sleep duration, possibly by 

advancing sleep timing [16]. Beyond this, sleep quality is also related to light exposure 

during the day. Several studies report that daytime exposure to white light enriched in short-

wavelength content was associated with increased evening fatigue [91], and sleep quality 

[16, 39, 91], decreased sleep-on-set latency [39], and increased slow-wave sleep 

accumulation [92], which is related to the dissipation of the homeostatic sleep pressure [1, 

14, 34]. However, also the timing of light exposure seems to matter for sleep. In this context, 

Wams and colleagues [92] report that participants with later exposure to light >10lx had 

more nocturnal awakenings and less slow-wave sleep. In sum, research seems to agree that 

daylight (at high intensities) is beneficial for sleep.

Exposure to artificial lighting, smartphones and visual display units

In addition to natural daylight, humans are nowadays also exposed to a considerable amount 

of artificial light. This is particularly the case in the evening hours, i.e. when the circadian 

system is most sensitive to light-induced phase delays. Thereby, artificial light can delay the 

timing of the circadian clock and thus sleep [102]. Indeed, light from LED screens has 

repeatedly been suggested to interfere with sleep and the physiological processes involved 

(e.g., melatonin secretion [24]). Chang and colleagues [26] for example found that reading a 

book from an e-reader for four hours before sleep increased sleep onset latency, reduced 

evening sleepiness, melatonin secretion as well as next-morning alertness, and delayed the 

timing of the biological clock, which is also in line with other findings [72, 107]. It should 

be noted though that exposure to the “circadian-active” light source was very long in these 

studies (4–6.5 h) and it is unclear whether the same results can be expected for shorter 

exposures.

Evaluating sleep objectively with electroencephalography (EEG), Münch and colleagues 

[58] found that exposure to short-wavelength light for two hours starting 3 h before habitual 

bedtime first lead to decreased slow wave activity (SWA) and thus shallower sleep. From 

this, the authors concluded that the alerting effects of short-wavelength light persist into 

sleep, which is in line with findings by Chellappa and colleagues [28], who reported a 

decrease in homeostatic sleep pressure following short-wavelength light exposure in the 

evening. However, short-wavelength light exposure in the evening was also associated with 

increased SWA later during the night, suggesting a possible compensatory mechanism [58].

Also, the effects of evening light exposure do not seem to be independent from exposure 

during the preceding day. More specifically, Rångtell and colleagues [64] examined the 

effects of reading a novel on a tablet computer (~102 ± 41 lx, 7718 K) vs. in a physical book 

(~67 ± 50 lx, 2674 K) for two hours following prolonged (6.5 h) exposure to bright light 

(~569 lx, 3149 K) between 2:30 pm and 9 pm. Contrasting other findings, the light from the 
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tablet did not suppress melatonin or alter subjective and objective sleep parameters. Note 

though that also exposure was shorter than in studies that reported significant effects [26, 72, 

107].

Several studies have reported that smartphone ownership and use before bedtime may be 

associated with more self-reported sleeping problems [74], decreased sleep efficiency, longer 

sleep onset latency and poor sleep quality [29], and delays sleep thereby also shortening 

sleep duration [29, 50, 74]. Modern smartphones contain a “night shift” feature changing the 

colour balance in the evening hours (Infobox 1 for details). How much of the reported 

detrimental effect of smartphone use on sleep is due to light per se, or to some other feature 

(e.g. psychological engagement), is currently not known.

Effects of light on mood

Mood variations have been shown to be influenced by a complex and non-additive 

interaction between circadian phase and the duration of prior wakefulness. Specifically, 

relatively moderate changes in the timing of the sleep–wake cycle can significantly modulate 

mood [11].

Light can affect mood in several ways: by directly modulating the availability of 

neurotransmitters such as serotonin, which is involved in mood regulation, and by entraining 

and stabilising circadian rhythms, thereby addressing circadian desynchronisation and sleep 

disorders, which are rather common in people suffering from mental disorders. Therefore, in 

the last decades, light as an intervention—light therapy—has found an increasingly 

widespread use for treating mood and other psychiatric disorders [73, 97].

The precise mechanisms by which light exerts a positive influence on mood are currently not 

known though. In addition to the circadian effects of light mediated via the SCN, a pathway 

from the retina to the habenula has recently been found to be involved in mediating effects 

of light on mood in animal models [38, 110]. This pathway, connecting some ipRGCs with 

the habenula and bypassing the SCN altogether, has been suggested to specifically mediate 

light-induced alterations in mood [38]. Although it is unclear to what extent these findings 

can be applied to humans, imaging studies at least suggest that the human habenula is also 

sensitive to modulations of ambient light [46]. More research is needed to identify the 

mechanisms underlying light therapy.

In the following, we will provide an overview of the major clinical applications of light 

therapy and a brief guide to its use in daily clinical practice.

Light therapy as an intervention in psychiatric conditions

Bright light therapy (BLT) for mood disorders was first introduced for the treatment of 

Seasonal Affective Disorder (SAD) in 1984 [68]. SAD is a subtype of depression 

characterised by strong seasonal variations in mood states. BLT is nowadays established as 

first-line treatment for SAD [61, 75] leading to an amelioration of symptoms after a few 

days of treatment. Light therapy is also effective as second-line treatment for non-seasonal 

depression, although it usually takes longer (2–5 weeks) than in SAD to achieve a 
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therapeutic effect [2, 75, 87]. BLT, especially in combination with selective serotonin 

reuptake inhibitors (SSRIs), can accelerate the clinical improvement and lead to significantly 

fewer residual symptoms [7, 53]. In patients with chronic depression, BLT has been shown 

to lead to remarkable remission rates compared to placebo [41] and represents a valid 

therapeutic option also in gender-related mood disorders, such as premenstrual dysphoric 

disorder and perinatal depression [47, 96].

BLT can be delivered by special, commercially available therapy lamps, which operate at 

illuminance levels between 7000 and 10,000 lx, but natural daylight during a regular one-

hour morning walk has been shown to be similarly effective [99]. In populations who suffer 

from depressive mood resulting from of a lack of exposure to natural daylight due to, for 

example, working duties in shift workers, patients with altered sleep–wake rhythms (e.g. 

delayed sleep–wake phase disorder), or social withdrawal (patients with psychiatric 

disorders, elderly people), BLT provides an effective treatment and valid alternative to 

pharmacological approaches [98].

Not only “active” chronotherapeutic approaches, but also an adequate architectural design of 

the light environment may have relevant clinical implications for psychiatric patients. The 

availability of light in hospital rooms has been shown to decrease the length of stay of 

depressed patients in a clinic [6]. Moreover, retrospective analyses revealed a three-day 

shorter hospitalisation in bipolar depressed inpatients exposed to natural light in sunny 

hospital rooms compared to those in darker rooms [8].

Light therapy as an intervention in other medical conditions

In recent years, light therapy has been increasingly implemented as an adjunctive therapy for 

several other medical conditions. In patients with anorexia or bulimia nervosa, light not only 

improves mood but also helps to better control specific disease-related symptoms (for a 

review see [5, 49]). Well-controlled longitudinal studies have demonstrated that light not 

only has antidepressant effects in age-related depression, but can also slow down the 

progressive cognitive decline in dementia [52, 65]. More generally, due to its rhythm-

synchronising properties and its enhancing effects on sleep quality and wakefulness, BLT is 

becoming an important tool in geriatric care, to treat sleep–wake disturbances and reduce 

general listlessness [76]. The stabilising effects of light also make BLT a useful additional 

treatment in adult attention deficit hyperactivity disorder (ADHD) [69], border-line 

personality disorder [19], and other conditions characterised by sleep–wake disruption, such 

as schizophrenia [18] or neurodegenerative diseases [103]. New applications are also 

emerging in internal medicine, e.g. in intensive care units, where day and night differences 

in lighting are often severely attenuated, which may result in patients developing a 

fragmented sleep–wake cycle with a negative impact on their recovery [36]. Studies have 

also demonstrated beneficial effects of BLT in patients with sleep–wake abnormalities after 

renal transplantation [21] or in cirrhotic patients [33], as well as in severely brain-injured 

patients in post-comatose states [9, 10], and Parkinson’s disease [90]. Finally, one of the 

most common applications of light, often in combination with exogenous melatonin, is 

found in sleep medicine [70, 71] for the treatment of specific circadian rhythm sleep–wake 

disorders (CRSWD), including advanced and delayed sleep–wake phase disorder, jet lag, 
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shift work, sighted non-24 and irregular sleep–wake phase disorder (for diagnostic criteria 

see [89]).

Light therapy in practice

Timing, frequency and duration of light therapy sessions

The antidepressant effect of light is most pronounced when it is administered in the early 

morning hours [86, 97]. For CRSWD, the timing of therapeutic light exposure depends on 

the type of circadian disturbance and the direction of phase shift (advance or delay) to be 

pursued in order to achieve circadian resynchronisation. Therefore, a reliable marker of 

circadian phase should be first assessed to identify the phase position and then determine the 

timing of light treatment. The gold standard for measuring circadian phase is obtained by 

quantifying the so-called dim light melatonin onset (DLMO), i.e. the time at which 

melatonin levels rise above baseline, indicating that melatonin secretion has started. 

However, implementing DLMO assessment in the clinical practice remains difficult due to 

the limited availability of equipped centres that perform melatonin analyses and the costs of 

this diagnostic procedure, which are currently not reimbursed by health insurances in most 

European countries.

BLT is particularly effective when exposure to light occurs regularly, i.e. on a daily basis, for 

at least 30–60 min. Therefore, it is commonly performed in a domestic setting, which 

facilitates the required compliance, especially regarding timing, frequency, and duration of 

the treatment sessions. Disease relapses due to lacking therapeutic adherence depend on the 

underlying pathological condition: while SAD may rapidly reappear after a short therapy 

break, isolated days without light therapy are unlikely to have any negative consequences on 

circadian rhythm stabilisation in CRSWD, if regular sleep-wake schedules are maintained.

Light therapy devices

Most light therapy devices on the market are suitable for clinical use. They reach a corneal 

illuminance of 7000–10,000 lx at a viewing distance of 20–35 cm and are equipped with a 

protective screen with almost complete UV filtering. Ideally designed devices illuminate the 

patient diagonally from above with an irradiation angle of ~ 15°. A bevelled light surface 

prevents annoying glare and allows simultaneous reading, thus being better tolerated. To 

obtain a therapeutic effect, it is not necessary to look directly into the light source, but the 

eyes must be open. Available light therapy glasses, which even allow mobility during the 

sessions, also partially meet the required criteria of sufficient light illuminance. However, 

most of them have not yet been evaluated in large, randomised clinical trials. Another 

alternative to receive light in the early morning hours is through dawn simulators. These 

devices start providing a relatively weak light signal about 90 min before wake-up time, 

which, covering the patients’ final sleep cycle, then gradually increases in intensity from 

about 0.001 lx to about 300 lx. However, also for these devices, the design plays an 

important role, as a diffuse, wide lighting area is necessary to reach the sleeper in the 

different lying positions. For the same reason, other types of available miniature lighting 

devices are not recommended because of their small luminous field [98].
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Adverse reactions

Adverse reactions to light therapy include eye irritation, blurry vision, grumpiness, headache 

or nausea after light exposure. However, these effects are usually rare and lessen after a few 

days of treatment or under reduced dosage [98]. Isolated cases of increased excitability 

following light therapy have been reported in patients with bipolar disorder [98]. Occurring 

sleep problems such as problems related to initiating sleep when light is administered in the 

evening, or early morning awakenings when light is administered in the morning, are mostly 

related to an unappropriated time of light exposure and can be quickly resolved by 

modifying the timing of light therapy sessions.

Contraindications

Some relative contraindications should be taken into account when considering light therapy 

in patients with ophthalmological diseases or taking photosensitising drugs. These are 

summarised in Table 1; [22, 40].

Summary

Light not only enables us to see fine detail, colour and motion, but also exerts non-visual 

effects on circadian rhythms, sleep and mood. Light at the wrong time may disrupt circadian 

rhythms and sleep, but in the form of light therapy, light exposure can be used as an 

intervention for psychiatric and other medical conditions.
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ADHD Attention deficit hyperactivity disorder

BLT Bright light therapy

CCT Correlated colour temperature

CIE Commission Internationale de l’Eclairage

CRSWD Circadian rhythm sleep-wake disorders

DLMO Dim-light melatonin onset

EEG Electroencephalogram

GHT Geniculohypothalamic tract

IGL Intergeniculate leaflet

ipRGC Intrinsically photosensitive retinal ganglion cell

LED Light-emitting diode

PRC Phase response curve

RGC Retinal ganglion cell

RHT Retinohypothalamic tract
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RN Raphe nuclei

SAD Seasonal affective disorder

SCN Suprachiasmatic nuclei

SSRI Selective serotonin reuptake inhibitor

SWA Slow wave activity

UV Ultraviolet
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Infobox 1

Smartphones and sleep

Smartphone use may delay sleep onset. One factor is the light emitted by their screens, 

but another may also be its entertaining character or related psychological effects, or 

both. Using the “night shift”mode of modern smartphones, the colour balance of the 

screen can be shifted to “warmer” and orangeish colours depleted in short-wavelength 

light. On a recent iPhone 7, this amounts to a reduction of melanopsin activation by 67% 

at full display brightness. This might seem like a large reduction at first, though by 

simply dimming the smartphone to its minimum level, the melanopsin activation can be 

reduced to less than 1% of the activation at maximum display brightness. Whether or not 

the “night shift mode” has an appreciable effect on the circadian system and how it 

interacts with other properties of smartphone use is currently not known. Recent research 

using so-called metameric displays, which do not differ in their appearance but only 

differ in the amount that they stimulate melanopsin, show that the non-visual properties 

of light can be modulated independently of visual appearance [3, 78].
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Fig. 1. 
Input and output pathways to/from the suprachiasmatic nuclei (SCN). The photic input 

pathways that relay information about the intensity and spectral composition of ambient 

light are the retinohypothalamic tract (RHT) and the geniculohypothalamic tract (GHT), 

which connects retina and SCN via the intergeniculate leaflet (IGL) in the thalamus. 

Additionally, the SCN also receive non-photic information from the raphe nuclei (RN) via 

the raphe-hypothalamic tract (raphe-HT) and from the pineal gland. The main output is from 

the SCN to the serotonergic raphe nuclei (RN, receive information about the phase of the 

circadian clock and regulate vigilance state of the body) and the pineal gland, where 

melatonin is produced. Input and output pathways form reciprocal loops
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Fig. 2. 
Spectral power distributions of common light sources in our environment. a Spectral power 

distributions of daylights at different correlated colour temperatures (CCT; 4000 K; 6500 K; 

10,000 K). Spectra are normalised to 555 nm. b Spectral power distributions of a white LED 

(top), a fluorescent source at 3000 K (middle), and an incandescent source (tungsten-

filament; 2856 K, bottom). All three artificial sources have the same luminous flux 

(normalised to 100 lm), and approximately the same colour temperature (2700–3000 K), but 

the spectra are very different in shape and scale (see y axis)
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Fig. 3. 
Overview of the retina photoreceptors. a Schematic view of the eye with the retina at the 

back of the eye (the fundus), containing cones, rods and the intrinsically photosensitive 

retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. b Spectral 

sensitivities of the photoreceptors in the human eye
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Table 1
Relative contraindications to light therapy.(Modified from [22])

Ophthalmological examination 
recommended in the following 
conditions

– Pre-existing diseases of the retina or the eye, e.g. retinal detachment, retinitis pigmentosa, 
glaucoma

– Systematic diseases affecting the retina, e.g. diabetes mellitus

– Previous cataract surgery or lens removal

– Elderly people (increased risk of age-related macular degeneration; AMD)

Caution needed by patients 
taking following photosensitizing 
drugs

– Neuroleptics (phenothiazines)

– Antidepressants (imipramine)

– Mood stabilizers (lithium)

– Diuretics (hydrochlorothiazide)

– 8-methoxypsoralen

– Cardiac medications (propranolol, amiodarone)

– Chloroquine

– Antibiotics (tetracycline)

– “Natural medicines” (melatonin, St. John’s Wort)
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