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Abstract
Study Objectives:  The present study aimed at assessing the temporal non-rapid eye movement (NREM) EEG arousal distribution within and across sleep cycles and 

its modifications with aging and nighttime transportation noise exposure, factors that typically increase the incidence of EEG arousals.

Methods:  Twenty-six young (19–33 years, 12 women) and 16 older (52–70 years, 8 women) healthy volunteers underwent a 6-day polysomnographic laboratory study. 

Participants spent two noise-free nights and four transportation noise exposure nights, two with continuous and two characterized by eventful noise (average sound 

levels of 45 dB, maximum sound levels between 50 and 62 dB for eventful noise). Generalized mixed models were used to model the time course of EEG arousal rates 

during NREM sleep and included cycle, age, and noise as independent variables.

Results:  Arousal rate variation within NREM sleep cycles was best described by a u-shaped course with variations across cycles. Older participants had higher overall 

arousal rates than the younger individuals with differences for the first and the fourth cycle depending on the age group. During eventful noise nights, overall arousal 

rates were increased compared to noise-free nights. Additional analyses suggested that the arousal rate time course was partially mediated by slow wave sleep (SWS).

Conclusions:  The characteristic u-shaped arousal rate time course indicates phases of reduced physiological sleep stability both at the beginning and end of NREM 

cycles. Small effects on the overall arousal rate by eventful noise exposure suggest a preserved physiological within- and across-cycle arousal evolution with noise 

exposure, while aging affected the shape depending on the cycle.

Key words:   sleep stability; sleep fragmentation; GLMM; sleep cycle

Statement of Significance

Sleep is a dynamic process and frequent activation phases physiologically disrupt the continuity of sleep. Here, we observed that cortical 
arousal rates had an u-shaped time course suggesting that both the beginning and end of non-rapid eye movement (NREM) sleep cycles 
are phases of reduced physiological sleep stability. Aging and eventful noise exposure differentially affected the shape of the physiological 
arousal rate evolution. While aging affected both the overall time course level and the shape, eventful transportation noise exposure in-
creased the level without changing its shape suggesting that external stimuli fragment sleep along the physiological texture of the EEG 
arousal time course. When evaluating the effects of aging and nighttime noise exposure on sleep fragmentation, the physiological micro-

structural evolution needs to be considered.
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Introduction

Transient activation phases during sleep (i.e. autonomic arousals, 
sleep stage changes, cortical arousals, or awakenings) are gen-
erally considered to fragment sleep and, as a result, negatively 
impact the recuperative value of sleep [1–5]. Transient activation 
phases can occur in response to external stimuli, such as trans-
portation noise [6–11] or high-intensity white noise [12–14]. They 
also increase with aging without external stimuli and are part of 
the normal aging process in humans [15–19]. However, besides 
their potential negative effect on sleep continuity, transient ac-
tivation phases are also an integral and essential characteristic 
in the ultradian time course of physiological sleep [15, 20, 21].

Cortical arousals, as one class of transient activation phases 
during sleep, are not distributed randomly, but tend to cluster 
around certain time points during sleep [21–23]. Typically, sleep 
is organized in 4–5 ultradian sleep cycles of 90–110 min each, 
which comprise an episode of non-rapid eye movement (NREM) 
sleep followed by an episode of rapid eye movement (REM) sleep 
[24]. Temporal variations of cortical arousals can therefore be 
examined on the level of the sleep cycle (within-cycle) as well 
as over the course of an entire night sleep period (across-cycle). 
So far, these variations were almost exclusively investigated 
within the framework of the cyclic alternating pattern (CAP), 
a marker of sleep instability [23, 25] but insufficiently for the 
most established marker for cortical arousal: EEG arousal de-
fined according to the rules of the American Academy of Sleep 
Medicine (AASM) [26].

CAP is a rhythmic NREM EEG pattern characterized by 
sequences of A and B phases: EEG activity during A phases is 
either synchronized (subtype A1), desynchronized (subtype A2), 
or mixed (subtype A3), with the latter two overlapping with EEG 
arousals; B phases are composed of EEG background activity [23, 
25]. Regarding the time course, it was observed that subtypes A2 
and A3 occur more frequently during the ascending (i.e. when 
sleep is more superficial and progressing toward REM) than the 
descending (i.e. the first part of the ultradian sleep cycle when 
sleep progresses from lighter to deeper sleep) part of a sleep cycle 
[21–23]. Intra-night variations of spontaneous number of EEG 
arousals per hour have primarily been examined across sleep 
cycles while detailed time course analyses within sleep cycles 
have not yet been investigated. Results suggest no variation of 
EEG arousals across cycles [27] or time elapsed since sleep onset 
[28]. Spontaneous EEG arousals occur more frequently from both 
stage 1 NREM (N1) and REM sleep compared to stage 2 NREM 
sleep (N2) and slow wave sleep (SWS); EEG arousal rates are gen-
erally lowest during SWS [27, 28]. Within-cycle evolution of slow-
wave activity (SWA) follows an inverted u-shaped pattern with 
a gradual buildup, a plateau phase, and a rapid decline toward 
the transition to REM sleep depending on time asleep during 
the night [29–31] suggesting that the underlying arousal and 
SWS-generating mechanisms might be antagonistic. Across the 
night sleep period, however, the gradual decrease of SWA across 
cycles [30, 32, 33] does not mirror the across-cycle stability of 
EEG arousal [27] suggesting that EEG arousals are not a good 
marker for sleep homeostasis. Taking the two perspectives into 
consideration, namely transient activation phases as a marker 
for sleep fragmentation and as an integral and essential charac-
teristic of physiological sleep, we were interested in modeling 
the EEG arousal time course and its modifications with aging 
and nighttime transportation noise exposure.

We analyzed the microstructural architecture of NREM sleep 
using EEG arousals as a marker for transient activation phases. 
Data were acquired in a sample of healthy young and older in-
dividuals that underwent a 6-day polysomnographic (PSG) la-
boratory study and had two noise-free and four noise exposure 
nights (four different noise exposure situations: two with con-
tinuous and two characterized by eventful noise). To model 
the time course of EEG arousals, we normalized the NREM epi-
sodes of a cycle by subdividing it into 10 parts of equal length 
(within-cycle effect) and did this for the first four cycles across 
the night sleep period (across-cycle effect). The aim of the paper 
was threefold. First, we were mainly interested in modeling 
the time course of EEG arousals both within and across sleep 
cycles, which we expected to vary in a u-shaped pattern within 
cycles but not across cycles. Second, we investigated age-related 
modifications of temporal EEG arousal distributions. All-night 
number of EEG arousals per hour increase with aging [15, 16], 
but it is unclear how within- and across-cycle dynamics differ 
between age groups. Third, building on the notion that trans-
portation noise increases the number of all-night EEG arousals 
[6, 8], we were interested whether EEG arousals during noise ex-
posure nights had a similar temporal distribution pattern than 
during undisturbed nights. It is currently unknown whether the 
additional EEG arousals during noise nights occur at the same or 
other, additional time points than those of the physiological EEG 
arousal time course.

Methods

Participants

Data of 42 healthy volunteers in two age groups (26 young: 
24.6 ± 3.5 years, 19–33 years, 12 women; 16 older: 60.8 ± 5.9 years, 
52–70  years, 8 women) were included for analyses; two parti-
cipants of the older group dropped out of the experiment due 
to medical reasons (data excluded), and two participants of 
the young group dropped out after four nights due to personal 
reasons (data included). All participants were free from any acute 
or chronic illness and current medication (as assessed by means 
of clinical history, physical examination by a study physician, 
and routine blood and toxicological urine testing; young women 
without hormonal contraceptive use) and had good sleep (ha-
bitual sleep duration per night 8 ± 1 h; normal subjective sleep 
quality PSQI ≤ 5 (Pittsburgh Sleep Quality Index) [34]; normal 
general daytime sleepiness ESS ≤ 10 (Epworth Sleepiness Scale) 
[35]; and no signs of sleep disorders, such as sleep-related move-
ment and breathing disorders as confirmed via PSG during one 
screening/adaptation night prior to study admission. All had 
normal sex- and age-appropriate hearing thresholds (maximum 
hearing loss of the better ear no greater than the 10th percentile 
of an otologically normal population [36] at the frequencies 250, 
500, 1000, 2000, 3000, and 4000 Hz) tested manually with an audi-
ometer (Bosch ST-10, Stuttgart, Germany).

The study protocol, screening questionnaires, and con-
sent forms were approved by the local ethics committee 
(Ethikkommission Nordwest- und Zentralschweiz, Switzerland, 
#2014-121) and conformed to the tenets of the Declaration of 
Helsinki. All participants gave written informed consent prior 
to study participation and received financial compensation for 
participation. Data acquisition took place between October 2014 
and June 2016.
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Protocol and procedure

The protocol comprised six consecutive nights and days in the 
sleep laboratory. All participants were exposed to four different 
transportation noise scenarios that were played back during 
four nights with an incompletely counterbalanced sequence: 
scenarios with a more continuous noise characteristic (Road 
A–B) were alternated with scenarios with a more eventful noise 
characteristic (Road C, Rail D). Participants spent two noise-
free nights that were always the first (baseline night: BL) and 
the last night (recovery night: RC). Participants were informed 
about the initial and the last noise-free nights but had no know-
ledge about the dynamics of the different transportation noise 
scenarios. Time in bed was scheduled at individuals’ habitual 
bedtime and lasted 8  h for every participant. Noise scenario 
playback started immediately after lights off. Days and nights 
were spent in single windowless, soundproof, and temperature-
regulated bedrooms (22°C) under constant ambient lighting 
levels during waking periods (between 50 and 150 lux at the 
participant’s eye).

Participants were asked to keep a regular sleep–wake cycle 
with self-selected habitual bed and wake times for 1 week 
prior to the study start (nighttime sleep duration 8  ± 0.5  h, 
no nap taking). Compliance was verified by accelerometers 
worn on the nondominant wrist (Actiwatch AW4; Cambridge 
Neurotechnologies, Cambridge, United Kingdom) and self-
reported sleep-logs. During 1 week prior to the study start, they 
were also asked to restrict consumption of alcohol, caffeinated 
beverages, and chocolate to moderation to level out effects of 
these substances on sleep and waking functions. Young women 
were generally tested during the early follicular phase of their 
menstrual cycle (one woman was tested during the late luteal 
phase and progressed to the follicular phase over the course of 
the experiment; another woman was during the luteal phase for 
the whole experiment).

Noise scenarios

We used five pre-recorded real-world inspired acoustical 
scenarios for playback in the bedroom during the night: one es-
sentially noise-free (NF) and four transportation noise scenarios 
(Road A–C, Rail D) that differed with respect to noise source (dif-
ferent road traffic situations and railway noise) and noise ex-
posure situation (more continuous, more eventful). Scenario NF 
(LAeq,1 h of 30 dB at the ear of the sleeper; represents a rather tran-
quil real-world bedroom situation with a tilted window and a 
layer of steady road traffic sound from a remote road network 
plus natural sounds) was played back during BL and RC nights. 
Transportation noise scenarios (LAeq,1 h of 45 dB at the ear of the 
sleeper; corresponds to an average outdoor façade level of 60 

dB for a tilted window) were designed to represent relevant 
exposure situations (Table  1). Road A  represented a four-lane 
highway (speed limit of 120 km/h) with approximately 1,000 ve-
hicles per hour at a distance of 400 m.  Road B represented a 
distance of 50 m from a two-lane country road (speed limit of 
80 km/h) with approximately 250 vehicles per hour. Road C rep-
resented a one-lane urban road (50 km/h) at a 15 m distance 
with approximately 100 vehicles per hour. Rail D represented 
a railway noise situation with 10 nonoverlapping freight and 
passenger train pass-by events per hour. Creation of acoustical 
scenarios has been previously described in detail [11].

The noise scenarios were classified as three types with each 
factor representing two nights: noise-free (BL and RC night), 
continuous noise exposure (Road A and B), and eventful noise 
exposure (Road C and Rail D). Road C included 400 single road 
noise events that differed according to duration (16.6–58.8  s), 
maximum sound pressure level (SPL) (52.6–62.4 dB), and max-
imum slope of the SPL (2.4–6.4 dB/s). Rail D included 80 single 
railway noise events that differed according to duration (16.9–
113.7  s), maximum SPL (50.1–61.7 dB), and maximum slope of 
the SPL (0.7–5.2 dB/s). Noise events were distributed equally 
across the night (see Supplement 1.1.2).

The audio files were played back from portable audio devices 
(702T digital recorder, Sound Devices, Reedsburg, WI) through 
an active monitor loudspeaker (Focal CMS 50, Focal-JMlab, La 
Talaudière, France) at a 2 m distance to the sleeper’s head. The 
sound reproduction chain was calibrated with a sound level 
meter (Nor-121, Norsonic, Norway).

All reported acoustical metrics are based on A-weighted 
SPL.

Sleep recording

The PSG was recorded on Vitaport-3 digital recorder (TEMEC 
Instruments B.V., Kerkrade, The Netherlands) with a sampling 
rate of 256 Hz (storage rate 128 Hz, 1.024 Hz for ECG signals). The 
EEG was recorded at 12 scalp sites (F3, Fz, F4, C3, Cz, C4, P3, Pz, 
P4, O1, Oz, O2 according to the 10- to 20-electrode system refer-
enced against averaged mastoids). The electrooculogram (EOG) 
was recorded from two electrodes that were placed at the outer 
canthi of both eyes with one electrode above and one below the 
horizontal. The submental electromyogram (EMG) was recorded 
bipolarly. The electrocardiogram (ECG) was recorded with two 
electrodes placed at the center of the sternum and the left rib 
bone. Signals were filtered during recording (EEG, EOG, and ECG 
between 0.159 and 30 Hz; EMG between 1 and 70 Hz). Sleep sta-
ging and EEG arousal scoring followed the standard criteria of 
the AASM (v2.3 [26]) and was conducted by four experienced 
raters, blind to the specific noise exposure. One scorer analyzed 
all six nights of the same participant and the number of scored 

Table 1.  Characteristics of the acoustical scenarios

Scenario Noise source Noise type LAeq,1 h (dB) LAFmax (dB) LA5 (dB) LA10 (dB)

A Road Continuous 45 53 49 48
B Road Continuous 45 60 52 48
C Road Eventful 45 62 52 48
D Rail Eventful 45 62 53 46
NF Ambient/background Noise-free 30 39 35 34

SPL refers to sound pressure level; LAeq,1 h: hourly A-weighted equivalent SPL; LAFmax: maximum SPL with time weighting FAST; LA5: SPL exceeded 5% of the time;  

LA10: SPL exceeded 10% of the time.
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participants was balanced between scorers according to the 
participant’s sex and age. Inter-rater accordance was assured to 
be >85% by regular meetings to discuss questionable epochs and 
align local scoring procedures.

Arousal scoring

Arousals were visually identified by experienced scorers ac-
cording to the standard criteria of the AASM (v2.3 [26]) as “an 
abrupt shift of EEG frequency including alpha, theta and/or fre-
quencies greater than 16 Hz (but not spindles) that lasts at least 
3 seconds” [26, p. 45].

Sleep cycles

Definition of sleep cycles was largely based on standard criteria 
[24] with NREM episodes of a cycle (minimum duration: 20 min) 
being the time between the first epoch of N1 and the subse-
quent REM onset (≥5 min). In the first cycle, the minimum REM 
duration was allowed to be shorter than 5 min. Occasionally, a 
skipping of the first REM episode is observed: where REM is ex-
pected (i.e. after a consolidated period of SWS), only a lightening 
of the sleep process (i.e. a sleep stage transition to N1 or a brief 
awakening) occurs, especially during the first night in a new en-
vironment [37] or in younger individuals [38]. A NREM episode 
of a cycle was divided into two episodes if it was >120 min in 
duration (wakefulness excluded) and SWS was interrupted by 
>12 min by any other sleep stage than SWS [38, 39]. Consequently, 
the second cycle started with the subsequent SWS onset. We 
included only the first four cycles [27] that were complete, i.e. 
where REM sleep was followed by at least 5  min of NREM or 
wakefulness and only nights with at least three and not more 
than five completed cycles (see Figure  1). Consequently, sleep 
epochs after the last REM part and before the final awakening 
were neglected as were episodes after the fourth cycle. In most 
cases, the final awakening was experimenter-induced (after the 
end of the 8-h sleep period) and not spontaneous (≥3 min before 
the end of the 8-h sleep period; 23.17% of nights). In total, 234 
nights were analyzed (33 nights with three, 134 with four, and 
67 nights with five completed cycles), while 12 nights needed to 
be excluded (for 11 nights, the number of completed cycles was 
less than three or more than five; in one night, REM latency was 

less than 15 min). From a total of 903 cycles, 48 (5.31%) were ex-
cluded: 4 (0.44%) because the REM episode was <5 min for cycles 
2–4 and 44 (4.87%) because the cycle duration was outlying short 
or long, based on a cycle duration shorter or longer than the 
upper/lower quartile ± 1.5 times the interquartile range of the 
cycle duration (see Supplement 1.1.3). The median NREM epi-
sode length of the 855 sleep cycles was 70 min.

Outcome variables

Analysis of sleep macro- and microstructure variables was re-
stricted to the first four sleep cycles. Sleep macrostructure vari-
ables included total sleep time (TST), sleep efficiency (SE), onset 
latencies to N1, N2, SWS (i.e. first occurrence of respective sleep 
stage after lights off), and REM (first occurrence of REM after N2 
onset), percentage of TST spent in N1, N2, SWS, and REM (i.e. all 
for the episodes between N1 onset and the final awakening in 
the morning) as well as % intra-sleep wake of SPT (sleep period 
time). Sleep microstructure variables included EEG arousal rates 
(n/h TST, n/h NREM, and n/h REM) as well as awakening rates 
(n/h TST, n/h NREM, and n/h REM).

As differences between NREM and REM sleep EEG arousals 
are to be expected [40], we limited the analyses to NREM sleep 
and only modeled within- and across-cycle effects during NREM 
episodes. Each NREM episode of a sleep cycle was divided in 10 
parts of equal length (based on the scoring window duration 
of 0.5  min; if the quotient was uneven, duration of this cycle 
subdivision [CSD] was 1/10 NREM part + 0.5 min which was as-
signed randomly). The dependent variable was the EEG arousal 
rate during each CSD, modeled by the number of EEG arousals 
per CSD and an offset (the logarithm of CSD length). In addition, 
SWS was calculated as percentage of time spent in SWS per 
CSD duration (% of CSD duration). From a total of 8,550 CSDs, 
168 (1.96%) were excluded (144 [1.68%] because of >50% wake 
in CSD; 24 [0.28%] because CSD length corrected for wakeful-
ness was shorter than 1/10 of the minimum cycle duration of 
all individuals).

Statistical analyses

For statistical analyses of standard sleep variables, linear mixed 
models were used, which included random subject effects to 
account for the repeated measurements within participants. 
We included factors for noise type (noise-free vs. eventful noise 
vs. continuous noise), age group (young vs. older), and the inter-
action between the two.

We used generalized linear mixed models (GLMM) to fit the 
time course of arousal rates per CSD. The distribution of arousal 
rates was highly skewed to the right due to the absence of any 
EEG arousal in 45.38% of the CSDs (see Supplement 1.1.3). The 
distribution did not suggest any transformation to achieve nor-
mality and did not comply with a Poisson distribution. Thus, 
we opted for a negative binomial distribution, an alternative 
to the Poisson distribution used to model data that contain 
many zeros. Details of the statistical modeling and all inter-
mediate steps are documented in the Supplement. We started 
with a simple model with only the main effects, the offset, and 
a random subject effect and explored residual variances with 
respect to different discrete distributions. The main effects and 
only factors considered were age group (young vs. older), noise Figure 1.  Flow diagram of the selection of nights, cycles, and cycle subdivisions.
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type (noise-free vs. eventful noise vs. continuous noise), cycle (1 
to 4), and CSD (1 to 10). Next, we evaluated orthogonal polyno-
mial time trends regarding their ability to represent the 10-level 
within-cycle effect with fewer parameters. After this, we ex-
plored all possible two-way interactions and added them to the 
model, whenever likelihood-ratio tests indicated significance of 
the included two-way interaction. In the resulting model with 
all fixed effects specified, we first addressed possible collinearity 
between the fixed effects, as well as residual variance hetero-
geneity and time-related error structures. In a final step, we ex-
plored whether the resulting model could be simplified.

To address the first aim, the modeling of the within- and 
across-cycle time course of EEG arousal rates, we evaluated the 
two main effects of CSD and cycle, as well as their interaction. 
To address our second aim, the modification with age, we evalu-
ated the main effect of age as well as the possible interaction of 
age with CSD and cycle. A significant interaction between age 
and the polynomial time trends or the cycle factor would sug-
gest that the within- and across-cycle arousal rate time course 
differs between young and older participants, while the lack of 
such an interaction would suggest that the within- and across-
cycle arousal time course is the same for both age groups. For 
the third aim, the modification with noise, the procedure was 
similar, evaluating main effects and significant two-way inter-
actions to test whether the possible noise effect is uniform or 
nonuniform across the tested variables age, polynomial time 
trends, and cycle. In the case of nonsignificant interactions 
between age or noise and the polynomial CSD effects, we 
also tested the interaction between age or noise and CSD as a 
10-level factor, to ensure that the lack of effect was not due to 
the specific parametrization of CSD.

Because of the similarity of the time course of arousal rates 
and that of SWS, which is more evident for the within- than the 
across-cycle time course, we added a separate analysis that ex-
plored whether the variations in the percentage of SWS could 
partially or fully explain the variations of arousal rates within 

and across cycles. The use of a mediation analysis, the pre-
ferred statistical approach to address this type of question, is 
not yet implemented in the context of GLMM with a negative 
binomial distribution (see Supplement 2), so that we chose a 
very simplified approach to evaluate the effect of SWS. We com-
pared the coefficients of determination (R2) of the following 
five models: main effects (age, noise, polynomial time trends 
for CSD, and cycle) only (Model 1; M1), main effects and inter-
actions (i.e. the final model [M2]), SWS only (M3), main effects 
and SWS (M4), and finally main effects, interactions, and SWS 
(M5). Additionally, we compared the significance of the main ef-
fects between M2 and M5.

All analyses were performed in R [41]. All models were 
fitted using the glmmTMB library (v0.2.2.0) [42]. We used the car 
package (v3.0-0) [43] to evaluate significance of fixed effects 
using Wald chi-square tests. For post hoc testing (marginal ef-
fects, interactions, and pairwise comparisons), we used the 
emmeans package (v1.2.3) [44] and adjusted p-values for multiple 
comparisons (Tukey method). Residuals for the GLMMs were 
simulated using the DHARMa package (v0.2.0) [45]. R2 was calcu-
lated using the sjstats package (v0.17.0) [46].

Results

Sleep variables

Sleep macro- and microstructure variables for the selected 
intervals of the first four sleep cycles as well as the effects of 
noise and age are depicted in Table 2. Older participants had 
higher percentages N1 and N2 sleep and lower percentage of 
SWS than young participants; latencies to N1, N2, and REM 
sleep as well as awakening rates from REM sleep did not differ 
between age groups. NREM EEG arousal rates were signifi-
cantly higher in older than in young individuals (χ 2  =  14.79, 
p  <  0.001) and did not differ between noise types (χ 2  =  1.01, 
p = 0.602). Differences between the selection of the first four 

Table 2.  Sleep structure and continuity during selected intervals according to respective noise type and age group

Young Participants (N = 26) Older Participants (N = 16)

 Noise-free Eventful Continuous Noise-free Eventful Continuous   

 48 nights 49 nights 52 nights 30 nights 25 nights 30 nights Age Noise

TST (min) 359.2 (71.0) 372.4 (64.4) 373.8 (66.2) 335.3 (75.6) 355.7 (51.6) 323.5 (85.8) Young > older  
SE (%) 95.0 (3.0) 95.3 (3.2) 95.5 (2.8) 90.5 (4.4) 92.8 (3.6) 90.7 (8.5) Young > older  
Sleep latency N1 (min) 10.7 (8.5) 9.9 (8.2) 9.9 (7.0) 11.1 (6.1) 9.9 (6.2) 12.0 (11.3)   
Sleep latency N2 (min) 18.2 (10.3) 18.1 (10.3) 15.5 (8.2) 16.5 (7.7) 15.7 (6.9) 18.0 (12.1)   
SWS latency (min) 32.1 (14.9) 30.6 (10.8) 26.9 (8.2) 43.6 (29.9) 45.1 (38.3) 44.5 (24.4) Young < older  
REM latency (min) 76.3 (29.3) 64.9 (18.5) 67.0 (25.3) 74.7 (27.0) 69.2 (24.7) 64.5 (19.7)  Noise-free >

continuous noise
Intra-sleep wake (% of SPT) 1.9 (2.0) 1.8 (1.4) 1.6 (1.4) 5.7 (3.9) 4.6 (2.8) 4.6 (2.7) Young < older  
N1 (% of TST) 11.8 (3.7) 11.6 (3.4) 11.3 (3.4) 17.3 (6.7) 16.1 (4.0) 17.5 (6.7) Young < older  
N2 (% of TST) 45.8 (6.8) 45.0 (7.3) 45.4 (7.6) 48.6 (10.4) 53.5 (6.3) 50.9 (9.1) Young < older  
SWS (% of TST) 20.3 (7.6) 19.1 (6.9) 19.4 (7.9) 10.7 (11.5) 9.3 (6.3) 9.8 (9.1) Young > older  
REM (% of TST) 22.1 (5.7) 24.3 (5.7) 23.9 (5.1) 23.4 (5.3) 21.2 (4.4) 21.8 (5.8)   
EEG arousal rate (n/h TST) 10.0 (3.8) 10.6 (3.0) 10.6 (3.8) 17.6 (9.2) 16.2 (5.1) 18.2 (9.1) Young < older  
EEG arousal rate (n/h NREM) 9.4 (4.3) 10.0 (3.3) 9.9 (4.2) 16.3 (9.2) 14.9 (5.2) 17.1 (9.9) Young < older  
EEG arousal rate (n/h REM) 12.5 (5.7) 12.8 (6.0) 13.0 (6.4) 22.8 (15.5) 21.6 (9.8) 22.9 (13.8) Young < older  
Awakening rate (n/h TST) 1.3 (0.9) 1.3 (0.8) 1.2 (0.7) 2.0 (0.9) 1.9 (0.8) 1.8 (0.7) Young < older  
Awakening rate (n/h NREM) 1.3 (0.9) 1.5 (1.0) 1.3 (0.8) 2.2 (1.1) 2.2 (0.9) 2.1 (1.0) Young < older  
Awakening rate (n/h REM) 2.7 (2.5) 2.4 (1.9) 2.4 (2.0) 2.5 (2.0) 2.4 (1.6) 2.8 (2.3)   

Means (Standard deviations). TST refers to total sleep time; SE: sleep efficiency = TST/TIB; TIB: time in bed; TIB here: lights off until the end of cycle 4; SPT: sleep 

period time. The last two columns indicate the direction of significant post hoc tests for the factors age and noise type (all p < 0.05, Tukey).
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sleep cycles and the all-night sleep period for all sleep vari-
ables are described elsewhere (see Supplement 1.1.1) and 
showed that the selected sleep period was characterized by 
better sleep with higher sleep efficiency, increased SWS, and 
lower arousal and awakening rates compared to the all-night 
sleep period.

Distribution of EEG arousal rates

Figure  2 displays the within- and across-cycle time course of 
number of EEG arousals (upper panels) and percentage time 
spent in SWS per CSD (lower panel). In the preliminary model, 
all main effects, i.e. the factors for age group, noise type, cycle, 
and CSD contributed significantly to the model (see Supplement 
for detailed results and intermediate steps). The 10-level within-
cycle effect could be further reduced using fourth order poly-
nomials, which included the following terms: a positive linear, 
a positive quadratic, a negative cubic, and a positive quartic 
component with the quadratic component being by far the most 
prominent. Five significant two-way interactions between fac-
tors were included in the model (see also Table  3), which are 
described in detail in the following. In addition, we included a 
first order autoregressive error structure (likelihood-ratio test, 

χ 2 = 95.10, p < 0.001) to account for the correlation of residuals 
within cycles across CSDs.

We observed a characteristic within-cycle distribution 
that was largely determined by a u-shaped pattern, as readily 
observable in the effects display of the predicted marginal 
means in Figure  3A. However, the within-cycle time course 
was not independent of time of the night as indicated by the 
significant two-way interactions between cycle and the CSD 
linear, quadratic, and quartic trends, respectively. The CSD 
linear trend, describing the overall change in arousal rates from 
the beginning to the end of the cycle, was significantly dif-
ferent between cycle 1 and 2 and cycle 1 and 3 (Tukey post hoc, 
p < 0.007 for all comparisons). The CSD quadratic component was 
responsible for the prominent u-shape of the distribution and 
the larger its coefficient, the narrower the u-shape. The quad-
ratic coefficient was largest for the first cycle, smaller for the 
fourth cycle, and even smaller for the second and third cycle, 
reflected in the broader shapes in cycles 2 and 3.  However, 
only the differences between cycle 1 and 2 and cycle 1 and 
3 were statistically significant (p < 0.001 for all comparisons). 
The third order polynomial trend was not involved in any inter-
action and had a significant but minor effect compared to the 
other polynomial CSD effects. Its effect on the overall shape of 

Figure 2.  (A) Number of arousals (raw data) per cycle subdivision (CSD) during the first four normalized NREM sleep cycles in young (in red, upper panel) and older (in 

blue, lower panel) individuals. Each dot depicts the number of EEG arousals during one night at the respective point in time; bars depict the median. (B) Slow wave sleep 

(SWS) as the average percentage of time spent in SWS per CSD duration during the first four normalized NREM sleep cycles in young (red) and older (blue) individuals. 

Error bars represent ± SEM. CSD is depicted with a standardized length of 6.9 min, the overall average CSD length.
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the time course was to broaden the middle part of the cycle, 
changing the time course from a u-shape in the direction of a 
bathtub-shape. The effect of the CSD quartic component was to 
broaden the middle part of an already u-shaped time course by 
increasing the value in the middle (at 50%) and decreasing the 
values in the middle of the first (25%) and second half (75%), 
thereby leveling the time course in this part of the cycle. The 
quartic coefficient was largest for cycle 2 and progressively 
smaller for cycles 3, 1, and 4. Post hoc tests indicated that the 
quartic trend in cycle 4 was significantly smaller than all other 
cycles, and had an opposite sign compared to all other cycles 
(p < 0.05).

Modification with age
Because of the presence of significant interactions, we inter-
preted the significant main effect for age with caution; never-
theless, it is obvious that participants in the older age group 
had a higher overall arousal rate than younger participants 
(Figure  3A and C). In addition, the significant interaction be-
tween cycle and age indicated that arousal rates were signifi-
cantly lower during the first as compared to all other cycles in 
the young (Tukey post hoc, p < 0.001 for all comparisons), while 
in the older, cycle 4 had significantly higher arousal rates than 
cycles 1 and 2 (p < 0.005 for all comparisons; Figure 3C). Post hoc 
tests of the significant interaction between the CSD linear trend 
and age indicated that in the young age group, arousal rates at 
the end of the cycle were consistently higher than at the begin-
ning of the cycle (CSD linear trend with a positive coefficient), 
while in the older age group, arousal rates tended to be higher at 
the beginning of the cycle compared to its end (CSD linear trend 
with a negative coefficient).

Modification with noise
Arousal rates were higher during the eventful (scenarios C and 
D) compared to the noise-free exposure scenario (Tukey post 
hoc, p  =  0.03; Figure  3B). All tested two-way interactions were 
nonsignificant, which included the interaction between noise 
and the age group (χ 2 = 1.46, p = 0.48), noise and cycle (χ 2 = 12.10, 
p = 0.06), and noise and the within-cycle effects, both using poly-
nomial time trends (CSD linear trend: χ 2  =  1.61, p  =  0.45; CSD 
quadratic trend: χ 2 = 0.30, p  = 0.86; CSD cubic trend: χ 2 = 3.19, 
p = 0.20; CSD quartic trend: χ 2 = 1.32, p = 0.52), or CSD treated as 
a factor (χ 2 = 19.86, p = 0.34).

Table 3.  Wald chi-square tests of the final model (M2)

Effect χ 2 df P

Age 14.00 1 <0.001
Noise 6.76 2 0.034
Cycle 83.54 3 <0.001
CSD linear trend 19.40 1 <0.001
CSD quadratic trend 367.18 1 <0.001
CSD cubic trend 4.45 1 0.035
CSD quartic trend 20.02 1 <0.001
Age × cycle 83.67 3 <0.001
Age × CSD linear trend 18.32 1 <0.001
Cycle × CSD linear trend 18.86 3 <0.001
Cycle × CSD quadratic trend 28.64 3 <0.001
Cycle × CSD quartic trend 19.73 3 <0.001

CSD refers to cycle subdivision.

Figure 3.  (A) Estimated marginal means for arousal rates based on the final model in young (red) and older (blue) individuals. (B) Estimated marginal means over the 

three different noise types. (C) Estimated marginal means over the NREM cycle for the two age groups. The EEG arousal rate displayed here is the number of arousals 

per cycle subdivision (CSD) with a standardized length of 6.9 min, the overall average CSD length. Mean ± 95% confidence intervals.
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Effect of SWS
Table 4 gives the coefficients of determination for five different 
models: main effects only (M1), main effects and interactions 
(M2, our final model), SWS only (M3), main effects and SWS (M4), 
and main effects, interactions, and SWS (M5). Model 5 had the 
highest coefficient of determination among all tested models 
indicating that the inclusion of SWS further improved our final 
model. Comparing M2 and M3 revealed that our final model 
had a lower goodness of fit than the SWS-only model indicating 
that SWS alone might be as good as the 12-term model (M2) in 
predicting the time course of EEG arousal rates. Nonetheless, the 
comparison between M3 and M4/M5 suggests that, independ-
ently of SWS, within- and across-cycle effects further improved 
the goodness of fit. Furthermore, in both comparisons (M1 vs. 
M2 and M4 vs. M5), the inclusion of significant two-way inter-
actions in addition to the main effects improved the model fit. 
While both the noise condition and the interaction between 
cycle and CSD linear trend no longer contributed significantly 
to the model when SWS was included, all other predictors, main 
effects and interactions, still contributed significantly in both 
models (M2 and M5). More detailed results and a discussion of 
the shortcomings of our statistical approach are provided in the 
Supplement.

Discussion
The present analyses sought to examine the temporal distri-
bution of EEG arousals both within and across sleep cycles and 
whether this distribution was modified by age and transpor-
tation noise exposure. The main results were: (1) arousal rates 
varied considerably within sleep cycles in a u-shaped or more 
bathtub-shaped course depending on the time of the night. 
(2) Older participants showed higher overall EEG arousal rates, 
being higher at the beginning than at the end of each NREM 
sleep episode in contrast to an opposite pattern in young parti-
cipants. (3) EEG arousal rates increased during eventful noise ex-
posure when compared to noise-free nights in both age groups 
across all NREM sleep episodes; although this was not con-
sistent across analyses.

EEG arousal rates had a characteristic temporal distri-
bution that was best described by a u-shaped curve with the 
highest number of arousals both at the beginning and end of 
a normalized NREM sleep episode. This characteristic distribu-
tion might be indicative of phases of decreased physiological 
sleep stability at the beginning and end of cycles. The results 
are in accordance with the distribution of CAP subtypes 2 and 3 
which, per definition, share characteristics used for scoring EEG 
arousals [21–23, 47]. In general, the observed EEG arousal distri-
bution is compatible with the typical NREM sleep architecture, 

which can be subdivided into three consecutive phases: initially, 
sleep stability is low and gradually EEG synchrony increases; 
next is a plateau phase of relative stability; and finally EEG syn-
chrony rapidly declines toward REM sleep when sleep stability 
is again relatively low [23, 31]. The increase of EEG arousals pre-
ceding the onset of REM sleep in both age groups suggests a 
relationship with REM sleep and conditions that promote this 
state [23, 47, 48]. We chose EEG arousal as a marker for ultradian 
variation of activation during sleep, but other activation indices 
also vary along the ultradian cycle. For the temporal distribu-
tion of body movements [49], heart rate dynamics [33], transient 
changes in EMG muscular tone [50] as well as EEG beta power 
fluctuations during sleep [51] a time course similar to that of 
EEG arousals has been described with activity peaks at the be-
ginning and toward the end of NREM cycles. Finally, several 
heart rate variability indices also showed a marked u-shaped 
pattern within NREM cycles, though only in young but not in 
older individuals [52].

Generally, EEG arousal rates increased across the night, but 
were only statistically different between the first and all other 
cycles in the young and between the fourth and the first two 
cycles in the older. The across-cycle fluctuations are not in 
accordance with the literature where no variations were re-
ported across cycles [27] or time elapsed since sleep onset [28] 
and might be explained by differences in methodological ap-
proaches and the EEG arousal definitions. De Gennaro et al. [28] 
calculated arousal rates per hour of elapsed sleep time thereby 
not considering sleep cycles or any differences between NREM 
and REM sleep and Sforza et al. [27] calculated arousal rates per 
sleep cycle, but pooled NREM and REM arousals. In addition, 
we adopted the standard 3-s minimum duration criterion [26], 
while Sforza et al. [27] and De Gennaro et al. [28] additionally in-
cluded events with a duration between 1.5 and 3 s. On the other 
hand, this might only be a minor concern as apparently only 
1.9% of all arousal events were below 3 s in duration [27].

The observed overall increase of EEG arousal rates in the 
older participants is consistent with the literature [15, 16, 
19]. Increased sleep fragmentation is a frequently reported 
age-related change of sleep architecture [53] and might be due 
to the decreased ability to maintain consistent and stable sleep 
states with aging [17, 54]. In the present study, age-related modi-
fications of the EEG arousal time course were examined using 
interactions. There was a significant interaction with the CSD 
linear trend: while the linear trend was positive in the young, 
indicating lower EEG arousal rates at the beginning compared to 
the end of a NREM episode, this coefficient was negative in the 
older. It might be speculated that increased EEG arousal rates 
at the beginning of a cycle reflect an impaired sleep deepening 
process when sleep states switch to NREM sleep, either from 
wakefulness during the sleep onset period or from REM sleep for 
subsequent sleep cycles. However, the other tested interactions 
with polynomial time trends lacked significance suggesting that 
the basic physiological texture of arousal distribution during 
sleep cycles is largely unaffected by age.

EEG arousal rates were increased during nights with eventful 
noise exposure compared to noise-free nights. The absence of 
significant interactions with noise exposure allows for the con-
clusion that EEG arousals during noise exposure nights occurred 
at similar points in time than during physiological, noise-free 
conditions, therefore increasing the overall level but not chan-
ging the shape of the EEG arousal time course. This result was not 

Table 4.  Coefficients of determination (R2) for the different 
tested models

Model R2

M1 Main effects only (age, noise, polynomial time trends, and 
cycle)

0.27

M2 Main effects and interactions (final model) 0.35
M3 SWS only 0.38
M4 Main effects and SWS 0.44
M5 Main effects, interactions, and SWS 0.52
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consistent with results based on the all-night NREM EEG arousal 
rates (as depicted in the Supplement Table S1) which were not 
affected by noise exposure likely due to methodological reasons. 
Occasionally, the REM episode of a cycle is interspersed with 
phases of NREM sleep—as long as this NREM sleep is shorter 
than a predefined time interval, per definition, this NREM sleep 
occurs during the REM episode [24]. For the all-night analysis, 
all EEG arousals occurring during NREM sleep were considered, 
while for the time course modeling only EEG arousals were con-
sidered that occurred during continuous NREM sleep episodes 
without any intervening REM sleep. Consequently, it is likely 
that the all-night analysis included more EEG arousals, namely 
those occurring during brief NREM intrusions during continuous 
episodes of REM sleep. Compared to the other effects in the 
final model, the noise effect was rather weak and the described 
small differences in considered NREM sleep might explain the 
significance of the noise factor in one but not the other ana-
lysis. During noise exposure nights, typically some EEG arousals 
are noise event-related (i.e. occur in temporal proximity to a 
noise event), while the other occur spontaneously (i.e. without 
an overt eliciting noise event). Indeed, many event-related EEG 
arousals replace spontaneous EEG arousals and only partly add 
to them [6]. However, it is not possible to observe whether a re-
corded arousal is a replacement or a true event-related arousal, 
which is why we decided to model the time course using all EEG 
arousals and not only a subset of event-related EEG arousals. 
Focusing on event-related EEG arousals only, would also have 
limited analyses to two nights per individual as the other noise 
exposure nights included more continuous noise, which per 
design had few distinct noise events to relate EEG arousal to. 
Consequently, the strength of our experimental design is the 
inclusion of these two very different noise exposure situations 
and results suggest that only eventful noise exposure had an 
effect on the microstructural architecture of NREM sleep when 
compared to noise-free conditions despite both eventful and 
continuous noise exposure nights having the same constant 
hourly LAeq,1 h of 45 dB.

Within cycles, the well-known evolution of SWS [29, 30] pro-
gresses inversely to the evolution of arousal rates so that we also 
tested whether the variations in the percentage of SWS could 
partially or fully explain the variations in arousal rates within 
and across sleep cycles. Regrettably, we could not use mediation 
analyses as these were not yet implemented in the context of 
GLMM with a negative binomial distribution. We therefore com-
pared coefficients of determination of different models as an 
approximation. However, computing coefficients of determin-
ation in the context of GLMMs is also challenging due to the 
treatment of the random effects as well as the underlying dis-
tribution, so that the respective results need to be interpreted 
with caution. Our results suggest that a considerable part of 
the observed effects could be mediated by SWS, but that even 
with SWS in the model, there were additional SWS-independent 
within- and across-cycle effects that contributed further to the 
model. Similarly, Terzano et al. [47] reported that the time course 
of CAP subtypes A2 and A3, normalized in a similar way over the 
first five sleep cycles, was largely but not exclusively determined 
by SWA.

Our dependent variable, EEG arousal rate, contained a high 
number of zeros, a situation not uncommon in biology [55], 
which poses a particular challenge to any modeling. An excess 
number of zeros can have different reasons that significantly 

influence model choices (see Supplement 1.2.1). In the present 
analysis, we found that the distribution was consistent with a 
negative binomial distribution when all main effects were in-
cluded in the model. Other model options, however, might also 
have been adequate. Of particular interest, are the so-called 
zero-altered models, which assume that there are actually two 
processes that produce the observed distribution with excess 
zeros. The first process determines whether or not there is any 
arousal, while the second process determines the number of 
arousals once the first process has overcome a critical threshold 
or hurdle. A  tempting scenario is that the first process is rep-
resented by SWS while age, noise, and the other effects repre-
sent the second process. The models presented in this paper can 
therefore be seen as a starting point and an intermediate repre-
sentation rather than a final model. Another model choice that 
deserves discussion is the orthogonal polynomial time trends 
used to represent the within-cycle CSD effect. Our main con-
cern was physiological interpretability of the effect which is not 
given when regarding CSD as a factor with 10 levels. Orthogonal 
polynomials are an alternative because they model a time 
course rather than single time points which improves inter-
pretability, particularly when considering interactions, e.g. be-
tween group differences in the time course. However, this is only 
realistic for a limited number of polynomials. As detailed in the 
Supplement (1.2.2), a model with six polynomial trends fits the 
data as well as CSD as a factor but we decided to go with only 
four polynomial trends because we felt that six were no longer 
interpretable. Another option includes generalized additive 
mixed models (GAMMs) that use flexible smoothing functions. 
However, choice of smoothing function and parameters would 
have added considerable complexity which in turn impedes in-
terpretability. Nevertheless, this underlines that our presented 
model is only one of several possible and that there remain sev-
eral promising avenues for future studies.

In conclusion, EEG arousal rates varied considerably within 
NREM sleep cycles in a u-shaped or more bathtub-shaped course 
depending on the time of the night suggesting that both the 
beginning and the end of cycles are phases of reduced physio-
logical sleep stability. Older participants had higher overall 
arousal rates and a different distribution of arousals at the be-
ginning and the end of the cycle. Eventful transportation noise 
exposure increased the overall level of EEG arousals but did not 
change the shape of the time course suggesting that eventful 
noise exposure leads to an unspecific increase of EEG arousals, 
which was embedded within the physiological structure of sleep 
stability during the night.

Limitations

Our analyses are based on a few limiting assumptions. The 
number of completed sleep cycles can vary across nights both 
within and between individuals [24, 31]. Here, we restricted the 
analysis to nights where the number of completed cycles was 
between three and five cycles assuming that fewer or more 
completed cycles represent outliers. Similarly, the duration 
of the NREM episode of a cycle was restricted to a duration 
between 33 and 116 min. Consequently, this procedure limits 
the generalizability of our results for nights with more, less, 
shorter, or longer cycles. Furthermore, we pooled data of in-
dividual nights with three, four, or five completed cycles as-
suming that within- and across-cycle effects on the arousal 
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rate do not vary with the number of completed cycles per 
night. To the best of our knowledge, differences in homeostatic 
regulation, spontaneous arousal rates, or arousal thresholds as 
a function of number of completed cycles have not yet been ad-
dressed in the literature, so that it remains open whether this 
assumption is valid.

Supplementary Material
Supplementary material is available at SLEEP online.
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