
Human circadian melatonin rhythm phase delay during a fixed
sleep–wake schedule interspersed with nights of sleep deprivation

Introduction

The accuracy and stability with which the circadian system
adopts a distinct phase relationship with the 24-hr day–

night cycle is thought to be of crucial importance for the
temporal organization of physiology and behavior [1].
Accuracy and stability of entrainment can be accomplished

by resetting mechanisms that correct the deviations (T)tau)
of the endogenous circadian period (tau) from the solar day
(T). These resetting mechanisms include circadian phase-
dependent shifts of the pacemaker and potentially circadian

phase-dependent changes in the period (velocity) of the
pacemaker in response to resetting stimuli (zeitgebers) such
as the light–dark cycle [2–6]. It is now well established that

the human circadian pacemaker, as assayed by the rhythms
of melatonin, core body temperature and cortisol, can be
reset by light exposure [6–9]; for a review see [10]. Research

during the past 2 decades has revealed that (1) the human
circadian pacemaker is sensitive to light for a major part of
the circadian cycle [5, 11]; (2) the response to light varies

systematically throughout the endogenous cycle and can be
summarized in phase response curves (PRCs) [4, 6, 9]; and
(3) the pacemaker is sensitive to low light levels and the

illuminance–response curve is non-linear such that, after
3 days under dim light conditions, �100 lux may exert 50%
of the effect obtained with �9000 lux [7, 12]. In the above-
mentioned PRC studies, the sleep–wake, activity and social
interaction schedules have been shifted in synchrony with
the light stimulus. It is therefore possible that the phase
shifts observed in these studies include a contribution from

non-photic cues.
It has also been recognized that the intrinsic period of the

human circadian pacemaker is not 25 hr, as was once

thought, but is closer to 24 hr, ranging from �23.9 to 24.5
(for a review see [13]). This implies that a daily phase
advance of �20 min only will suffice for stable entrainment
in most people. Such an advance could conceivably be
induced by very little light. Indeed, Wright et al. [14]
reported that five of six subjects were entrained to a regular
24-hr cycle consisting of �1.5 lux of light during 16 hr of
scheduled wakefulness and 8 hr of scheduled sleep in
darkness.
The data on the light sensitivity of the human circadian

pacemaker as well as the recent estimates of the intrinsic
circadian period have been incorporated into mathematical
models of the effects of light on the human circadian
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pacemaker. These models have successfully described the
results of various protocols [15, 16] including the dynamics
of melatonin phase in the course of a 3-day resetting trial

[17]. However, these models do not incorporate the putative
effects of zeitgebers other than light (non-photic) on the
human circadian pacemaker. Several lines of evidence now
suggest that non-photic zeitgebers may contribute to

entrainment of human circadian rhythms. Exogenous
melatonin (for a review see [18]), physical activity [19–21],
food intake [22], and the duration and timing of sleep

episodes [23–25], or sleep per se [26] have been reported to
affect the phase of the human circadian pacemaker. In fact,
the entrainment observed during a 24-hr schedule of sleep

and wakefulness in the presence of a weak light–dark cycle
in carefully controlled laboratory studies (e.g. as in [14])
could be mediated by either the effects of light, the
scheduled regular sleep–wake cycle, or a combination of

both.
In non-laboratory conditions, such as for shift workers,

people may be exposed to low light levels during wakeful-

ness and sleep–wake cycles are often irregular. Such
schedules could conceivably compromise stability of
entrainment. We therefore investigated the stability of the

phase of the plasma melatonin rhythm, which is considered
to be a reliable marker of the human circadian pacemaker,
during exposure to a regular dim light/dark and wake/sleep

cycle, interrupted by two nights of sleep deprivation (SD) in
dim light. The data were compared with predictions of a
mathematical model in which only photic stimuli exert a
drive onto the human circadian pacemaker [15, 16].

Methods

Subjects

Potential volunteers were recruited via poster advertisement

in the Greater Boston area. After passing a telephone
screening interview, potential subjects gave informed con-
sent and completed the following screening questionnaires:
the Beck Depression Inventory-II [27], the Horne–Östberg

Morningness–Eveningness Questionnaire [28], and a ques-
tionnaire covering sleep habits and physical health. Subjects
showing no evidence of psychopathology or symptoms of a

sleep disorder on these screening instruments were sched-
uled for a physical examination, routine blood and urine
chemistries, and a 12-lead electrocardiogram. They also

received a screening interview with a licensed psychologist
to rule out personal or familial history of major psycho-
pathology and to determine their comprehension and

ability to comply with the investigational procedures.
Finally, potential subjects were interviewed by an investi-
gator, and written informed consent was obtained for the
protocol, which was approved by the Brigham and

Women’s Hospital’s Human Research Committee.
Seven men and five women (mean age: 22.1 years; range:

19–28 years) were studied. Women were studied in the

follicular phase of their menstrual cycle. Subjects were
instructed to abstain from caffeine, nicotine, alcohol, and
drugs for 3 wk before the study; their compliance was

verified on the day of admission to the laboratory with
urinary toxicologic analysis. During the 3 wk before their

admission to the laboratory, subjects were asked to keep a
regular sleep–wake schedule (bedtimes and wake times
within ±30 min of self-selected target times scheduled 8 hr

apart). Adherence to this regular schedule during the week
immediately prior to admission was verified with a wrist
actigraph (Mini Motionlogger, AMI, Ardsley, NY, USA).
All subjects gave their written informed consent. The

protocol, consent form, and advertisements were approved
by the Human Research Committee of the Brigham and
Women’s Hospital.

Protocol

The inpatient portion of the protocol (Fig. 1) consisted of a
12-day stay in the General Clinical Research Center
(GCRC) of the Brigham and Women’s Hospital. All suites
in the facility were constructed to enable the study of

subjects in an environment shielded from external time cues
(windowless, sound proofing, double door entry, etc.).
Subjects were admitted to individual suites in the GCRC

between 15:00 and 18:00 hours on day 1 of the protocol and
discharged between 10:00 and 14:00 hours on day 12. The
timing of the subjects� sleep–wake cycle in the laboratory
was scheduled according to the midpoint of their typical
8-hr sleep episodes and were assessed by averaging their
bedtimes and wake times as reported in their diaries. Each

day, the subject arose at her/his typical wake time and went
to sleep at her/his typical bedtime with the exception of day

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

Day 7

Day 8

Day 9

Day 10

Day 11

Day 12

Time of day
6:00 12:00 18:00

Sleep

Wakefulness

6:00 12:00 18:00

40 h - SD 1 

40 h - SD 2 

Fig. 1. Experimental protocol. After 3 days of baseline recordings
(days 1–3) under a light–dark cycle of 16:8 hr (approximately
5–13 lux during wakefulness, tippled bars and approximately
<0.03 lux during sleep, black bars), subjects underwent a sleep
deprivation (SD, 40 hr of prolonged wakefulness in 5–13 lux). The
first SD (SD 1) was followed by two recovery days (days 6 and 7)
under a 16:8 light–dark (LD) cycle. On habitual wake time on day
8, the second 40-hr SD (SD 2) in 5–13 lux started, followed by three
recovery days under a 16:8 LD cycle (days 10–12). Subjects were
scheduled according to their habitual bedtimes and wake times.
The only difference between the two SDs was body posture, which
was either supine or sitting/standing throughout the entire SD 1 or
SD 2 (counterbalanced). The timing of bedtimes presented in the
plot, represents the average subjects� bedtime.
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4 and day 8. Upon awakening on these days (day 4 and day
8) subjects began a 40-hr SD protocol. During one of these
SDs, subjects were in a constant supine posture throughout

the 40-hr episode. In the other SD, subjects alternated
between sitting (40 min) and standing (20 min). During the
standing portion of the protocol, subjects stood in front of
a laptop mounted on a high table, and they could walk

around in an area of 1–3 m. The order of these two SD
protocols was balanced. During the entire 12-day period,
light levels were maintained at <50 lux during wakefulness

and at <0.03 lux during scheduled sleep episodes. Ceiling-
mounted fluorescent lamps (T8 and T80, Phillips, Eindho-
ven, the Netherlands) with a 4100 K color temperature

produced a spectrum of white light. Clear polycarbonate
lenses filtered 99.9% of the light in the UV range. During
scheduled wakefulness the highest possible illuminance was
50 lux. Technicians measured the light levels in the angle of

gaze during scheduled wakefulness on each day of the
protocol. Post hoc analyses of these values revealed that the
ambient light levels varied between 5 and 13 lux.

Core body temperature was measured every minute via a
rectal thermistor (YSI, Yellow Springs, OH, USA)
throughout the experiment, and blood samples were taken

through an indwelling, intravenous catheter every 30 min
from day 2 to day 9. During the sitting/standing CR, the
blood samples were drawn during the middle of the sitting

(40 min) and standing episodes (20 min), respectively,
which resulted in a 30-min sampling interval. An attached
12-foot line allowed for frequent blood collection during
both episodes of wake and sleep, with minimal disturbance

of the subject. Collected samples were centrifuged at 2–4�C
and a portion of the plasma was taken and frozen for the
estimation of melatonin concentration by radio-immuno-

assay (assay sensitivity of 2.5 pg/mL; intra- and inter-assay
coefficients of variation, 8 and 13%, respectively: Diagnos-
Tech, Osceola, WI, USA).

Assessment of circadian phase and statistical
analysis

The circadian phase was estimated from plasma melatonin
data. Comparative analysis has shown that melatonin
phase is a more reliable and accurate measure of circadian

phase than the core body temperature rhythm [17, 29].
Difficulties with blood sampling procedures during sleep
episodes prevented continuous melatonin phase assessment

in two subjects. A complete melatonin data train was
available in the remaining 10 subjects. For each subject, the
period during which melatonin was collected (days 2–9), the

upward and downward crossing times of the 24-hr mean
(15:00–15:00 hours the next day) was calculated in addition
to the timing of the midpoint between (Fig. 2, for details on
this method see [12]). Melatonin secretion, defined as the

average melatonin level between the upward and downward
mean crossing, and the width of melatonin secretion,
defined as the duration between the upward and downward

mean crossing, were calculated (Fig. 2). In addition, the
area under curve (AUC) between the upward and down-
ward mean crossing time was calculated on z-scored

melatonin values using the trapezoidal method. For each
subject, the values were z-scored over the entire data train

and then averaged across the subjects. In order to evaluate
time-dependent changes in the circadian phase, repeated

measures ANOVAS (rANOVA) were used with the repea-
ted factor �day�. All P values derived from rANOVAs were
based on Huynh–Feldt’s (H–F) corrected degrees of free-

dom, but the original degrees of freedom are reported.
When the F-ratio proved significant, post hoc comparisons
using the Duncan’s multiple range test were performed. For

single comparisons, the paired t-test or the Wilcoxon
matched pairs test were used (e.g. whether the observed
phase drift was significantly different from 0 to 24 hr,

respectively). Pearson’s correlation coefficients were com-
puted to compare the secretion, the width and AUC of
melatonin secretion with the observed drift. Statistics were
performed using the statistical packages SAS� (version 6.0,

SAS� Institute Inc., Cary, NC, USA) and Statistica�

(version 5.0, StatSoft, Inc., Tulsa, OK, USA).
The protocol was simulated using Kronauer’s light model

[15, 16] using the Circadian Performance Simulation Soft-
ware (version 1.2, 2002, CPSS �, Brigham and Women’s
Hospital, Boston, MA, USA). This model predicts the phase

and amplitude of the human circadian pacemaker during
exposure to photic stimuli, with a temporal resolution of
0.1 hr (simulation step size).

Results

Fig. 2 illustrates the average (n ¼ 10) time course of plasma

melatonin concentration (z-scores) during days 2–9. Data
were plotted with respect to the average scheduled wake
time on day 2, which occurred at 8:00 hours. Visual

inspection of the daily melatonin profiles indicated a
progressive drift to a later clock time (Fig. 3).
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Fig. 2. Example of an individual plasma melatonin profile. Vertical
stippled lines delineate the upward mean crossing time, the mid-
point of the melatonin peak and the downward mean crossing time.
The horizontal line indicates the mean 24-hr level of plasma
melatonin in this subject.
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The daily drift of the melatonin midpoint was on average
12.0 ± 1.6 min (Table 1). This was significantly different
from zero (P < 0.00008, paired t-test) and corresponds to

an overall drift of 84.2 ± 10.8 min in 7 days. The temporal
relationship between upward and downward crossings, the
midpoint, and the imposed light–dark cycle is illustrated in
Fig. 4 for each day during the experiment. The midpoint of

plasma melatonin secretion occurred at 03:24 hours on day
2, whereas at 04:48 hours on day 9. Comparisons of the
drifts of the upward and downward mean crossing times

revealed a significant greater day-to-day variability in the
downward mean crossing times compared with the upward
mean crossing times (downward variance: r2 ¼ 0.61 hr;

upward variance: r2 ¼ 0.39 hr, z ¼ 2.2; P < 0.03, Wilcox-
on matched pairs test).
Correlational analyses revealed that the amount of daily

drift in the onset of melatonin secretion was negatively

correlated with the AUC of melatonin secretion (Table 1
and Fig. 5; r ¼ )0.74; P < 0.02). Correlations between the
offset of melatonin secretion and AUC were not significant

(Table 1 and Fig. 5).
The day-to-day variability in the width of melatonin

secretion yielded significance (rANOVA: F7,63 ¼ 3.1,
P < 0.02). Post hoc comparisons revealed that the width

of melatonin secretion was significantly longer during night
that immediately followed the two 40-hr SDs (P < 0.05 in
all cases, Fig. 6). The width of secretion during the other

nights did not differ significantly (P > 0.5).
In order to test the influence of body posture on the

melatonin profile an one-way rANOVA with the factor

�posture� (ambulatory, sitting–standing and supine) was
performed for all the measures (secretion, width, onset,
offset, and AUC). For none of the measures, except for
AUC, a significant effect of the factor �posture� was found.
AUC was significantly reduced during the 40-hr supine SD
condition (rANOVA: F2,18 ¼ 4.3, P < 0.03; post hoc
comparisons: P < 0.02 versus sitting/standing and

P < 0.01 versus ambulatory, Duncan’s multiple range test).
Further, the time course of plasma melatonin during the 40-
hr supine SD condition was compared with the time course

during the 40-h sitting/standing SD condition, which was
further separated in sitting and standing melatonin levels
(Fig. 7). A two-way rANOVA with the factors �posture�
(supine versus sitting versus standing) and time (4 hr before
and after the melatonin midpoint) yielded a significant main
factor �posture� (F2,18 ¼ 3.8, P < 0.05) and time
(F4,36 ¼ 73.3, P < 0.0001) without a significant interaction

between them. The mean secretion during this time interval
was significantly higher in the standing position compared
with the supine and sitting position (post hoc comparisons:

P < 0.05 for standing versus sitting and P < 0.005 for
standing versus supine, Duncan’s multiple range test).
Close inspection of the phase of the melatonin rhythm on

consecutive days suggests that the drift of phase during SD
was larger than on non-SD days. This could be related to
the continuous light exposure during SD. Alternatively this

may reflect an effect on SD conditions per se or a
combination of light exposure and SD conditions. To
further investigate this, we simulated the progression of
phase on the basis of Kronauer’s light model [15, 16]. For

the simulations, the light–dark cycles were approximated
(i.e. the two 40-hr SDs were included) with an average light
level of 1, 5 and 13 lux during scheduled wakefulness and

0 lux during scheduled sleep episodes (5–13 lux range of
actual measured ambient light levels at the angle of gaze).
In comparison with our experimental data (melatonin

midpoint drift), the simulated drifts, achieved after 7 days,
differed significantly (13:0 lux condition: 35.4 min versus
84.2 min; P < 0.009; 5:0 lux condition: 49.2 min versus
84.2 min; P < 0.05, paired t-test, Fig. 8). The overall

observed phase drift and the simulated �drift� with 1 lux
during wakefulness and 0 lux during sleep (66.0 min versus
84.2 min) did not differ significantly. Day-to-day compar-

isons between the experimental data and the model
predictions indicated significant differences starting from
day 5, which corresponds to the day after the first SD.

Melatonin phase occurred significantly later in the data as
was predicted by the light model (Fig. 8).
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Fig. 3. Double plot of average daily profiles of plasma melatonin
secretion throughout the protocol (mean values n ¼ 10; +1
S.E.M.). Data are double plotted relative to the average wake time
on day 2 (08:00 hours). Melatonin samples were not taken on day
1, and the end of blood collection was in the morning on day 9 after
SD 2. Gray areas illustrate the timing of the scheduled sleep epi-
sodes throughout the study protocol. An overall delay drift from
days 2 to 9 in the melatonin profile is discernible.
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Discussion

The circadian phase of plasma melatonin in subjects
exposed to light–dark cycles consisting of 16 hr of
5–13 lux and 8 hr of <0.03 lux interrupted by two 40-hr
episodes of sustained wakefulness under 5–13 lux, delayed

more than 80 min during a 7-day episode. Nighttime
melatonin secretion (AUC) and the phase delay observed
in the course of the experiment were such that lower

melatonin levels were correlated with larger phase delays in
the melatonin onset. The duration of plasma melatonin
secretion (the width of melatonin profile) was longer during

night following the 40-hr SD. The delay of the plasma
melatonin rhythm appeared modulated by the presence or
absence of sleep and darkness such that following the 40-hr

SD, melatonin phase delayed more than during the 24-hr
episodes of sleep and darkness. In addition, changes in

posture did alter the melatonin profile. The area under the
melatonin curve was reduced during the supine condition of

the 40-hr SD compared with 40-hr SD sitting/standing and
ambulatory conditions. Phase markers such as the upward
and downward mean crossing times were not significantly

altered by posture. Combining these data indicate that
stable entrainment of the human circadian pacemaker may
be compromised by one single night of SD and associated
dim light exposure in subjects who are otherwise exposed to

a weak photic synchronizer. To conclusively answer this
question, SD protocols in complete darkness are required.
The observed drift to a later clock time in all circadian

phase markers of the melatonin rhythm can be interpreted
as a delay of the light sensitive pacemaker. The magnitude
of the delay is similar to the delay that may be expected if

the pacemaker, with an intrinsic period of 24:12 min, was
free-running under these circumstances [3]. Such a delay, of
approximately 0.2–0.8 hr per day, has been observed in

many protocols in which subjects were exposed to low light
levels [3, 30–33]. In addition, a similar delay has been
observed in protocols in which the sleep–wake cycle was
inverted and subjects were exposed to three 5-hr dark pulses

during their biologic nights and dim light during the
remainder of the wake episode [34, 35]. This could indicate
that under circumstances of reduced zeitgeber strength the

pacemaker effects a delay until a new stable phase angle of
entrainment is reached. Alternatively, it may indicate that
under these circumstances the human circadian pacemaker

cannot be synchronized with the zeitgeber cycle. The
current protocol does not allow us to distinguish between
these possibilities but allows the conclusion that the

pacemaker does not reach stable entrainment when subjects
are exposed to days of a light–dark cycle with <13 lux
during wakefulness interrupted by two 40-hr SD in dim
light. Furthermore, the modulation of the magnitude of the

phase shift on consecutive 24-hr periods by the presence or
absence of sleep and associated light exposure demonstrates
conclusively that these behavioral and/or environmental

factors indeed exert a significant drive onto the human
circadian pacemaker.

Table 1. Parameters of mean daily plasma melatonin secretion profile per subject (n ¼ 8 days, ±1 S.E.M.) as well as averaged over subjects
(n ¼ 10, ±1 S.E.M.). Plasma melatonin secretion (pmol/L) was defined as the mean melatonin secretion between the upward and
downward mean crossing times, the area under the curve (AUC) was calculated on z-scores between the upward and downward mean
crossing times using the trapezoidal method, the width of the profile comprised the time (hr) between the upward and downward mean
crossing time; and average daily drift was expressed in minutes relative to the circadian phase position of the upward mean crossing, the
midpoint and downward mean crossing on day 2 (see text)

Subject no. Secretion (pmol/L) AUC (on z-scores) Width (hr)

Average drift per day (min)

Onset Mid Offset

1833y 242 ± 12.0 710.3 ± 25.4 8.9 ± 0.1 17.1 ± 7.6 16.4 ± 9.0 14.3 ± 11.5
1861y 243 ± 17.7 777.5 ± 55.4 8.8 ± 0.1 12.0 ± 5.8 8.4 ± 4.4 4.9 ± 9.9
1864y 346 ± 15.8 793.9 ± 44.7 9.5 ± 0.3 6.1 ± 15.2 6.7 ± 11.8 7.3 ± 16.7
1878y 288 ± 8.4 718.5 ± 8.5 9.5 ± 0.1 5.6 ± 5.5 5.1 ± 4.3 4.7 ± 4.6
18a5y 374 ± 12.9 816.3 ± 64.2 8.5 ± 0.1 7.0 ± 7.4 9.5 ± 8.4 12.0 ± 13.0
18d7y 300 ± 10.4 762.2 ± 21.7 9.8 ± 0.2 6.4 ± 4.4 8.2 ± 6.4 9.7 ± 12.3
1939y 303 ± 11.9 702.2 ± 30.3 9.1 ± 0.1 16.7 ± 6.2 17.4 ± 6.2 18.1 ± 8.7
1987y 219 ± 20.2 778.9 ± 51.5 8.8 ± 0.3 8.1 ± 4.3 19.1 ± 3.9 30.0 ± 9.5
1992y 200 ± 14.5 751.2 ± 77.3 9.4 ± 0.2 9.7 ± 9.3 14.0 ± 8.4 18.3 ± 13.6
19g5y 97 ± 6.8 670.3 ± 14.1 8.9 ± 0.2 18.4 ± 6.1 15.3 ± 10.0 12.1 ± 16.4
Mean ± S.E.M. 261.0 ± 25.1 748.1 ± 14.6 9.1 ± 0.1 10.8 ± 1.6 12.0 ± 1.6 13.1 ± 2.4

Upward mean crossing           Midpoint    Downward mean crossing

D
ay

2

3

4 (SD 1)

5

6

7

8 (SD 2)

9

Relative clock time
21 22 23 0 1 2 3 4 5 6 7 8 9 10 11

2 (16:8)

3 (16:8)

4 (24:0)

5 (16:8)

6 (16:8)

7 (16:8)

8 (24:0)

9 (16:8)

Fig. 4. Day-to-day variability in the upward mean crossing time
(filled circles), the midpoint (open circles) and the downward mean
crossing time (filled triangles) of the melatonin profile (n ¼ 10;
mean values ±1 S.E.M.). Gray areas delineate the timing of
scheduled sleep episodes [light–dark (LD) cycle; for sleep
<0.03 lux, white areas for wakefulness: 5–13 lux]. Daily L:D ratios
are indicated on the right-hand side ordinate.
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The negative correlation between the magnitude of the
observed delays and the nighttime level of melatonin

secretion may indicate that low amplitude melatonin
rhythms reflect reduced robustness of the circadian oscil-
lation, which theoretically implies increased sensitivity to

perturbations. Indeed, it has been shown that subjects are
more susceptible to the phase shifting effect of light when
their circadian amplitude was reduced by light [36–38],

which is in agreement with the concept of Wever that the
duration of re-entrainment correlates with the circadian
amplitude such that a smaller amplitude is associated with
more rapid re-entrainment ([39]). This suggests that circa-

dian amplitude is a determinant of rapidity and/or phase of
entrainment as well as phase resetting in human beings [34,
37, 38, 40]. It remains to be determined whether these

changes in circadian amplitude are also related to tau.
Application of Kronauer’s model to simulate the effects

of the light–dark schedule used in this protocol on circadian

phase yielded a good relationship between data and
simulations. In particular, both data and simulations
showed a progressive delay of circadian phase. The

relationship between data and simulations was high when
the model was exposed to 1 lux during scheduled wakeful-
ness and 0 lux during scheduled sleep.
The main discrepancy between the data and the model

prediction occurred after the first SD. In contrast to the
model, which predicted a phase advance of circadian phase,
circadian phase in the experimental data drifted to a later

clock time. During the 3 days following the first SD,
circadian phase did not fully advance to the phase predicted
by the model and then further delayed during the second

SD. Possible explanations for these discrepancies could be
that the current version of the model underestimated the
response in the phase delay portion of the PRC to light,
generally overestimated the response to dim light (<13 lux)

or misestimated the direct effect of light (5–13 lux) during
the CR on the circadian period. Alternatively this
discrepancy may have occurred because the model does

not incorporate the putative effects of SD on the circadian
phase. Such effects have been reported in animal studies in
which light exposure and physical activity were carefully

controlled [41–43], and in blind individuals [44] and more
recently also in sighted subjects [45]. Our data confirm
previous findings that posture affects plasma melatonin
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Fig. 5. Pearson’s correlations between the area under the curve (AUC; for methods see text) and the observed drift in either the melatonin
upward mean crossing time (Melon) or the downward mean crossing time (Meloff) of the melatonin curve. Each point represents one subject
(n ¼ 10). Before calculating the correlation, for each subject AUC and the observed Melon and Meloff drift over 8 days (days 2–9) was
averaged. A significant positive correlation between the AUC and the observed Melon was found. The correlation between AUC and the
observed drift in Meloff was not significant. Stippled lines delineate the 95% confidence interval.
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Fig. 6. Average plasma melatonin profile after a 16:8 hr light–dark
(LD) cycle and after a 40:8 hr LD cycle (z-scores; mean val-
ues + S.E.M., n ¼ 10). The 16:8 plasma melatonin profile repre-
sents the daily average over days 2, 3, 6 and 7, whereas the 40:8
plasma melatonin profile represents the daily average over days 5
and 9 (post-SD days). The profile during the sleep deprivation
episodes (SD 1 and SD 2) were not included in the present figure as
this profile represents an intermediate LD cycle and did not sig-
nificantly differ from the 16:8 profile. The duration of plasma
melatonin secretion (the width of the profile) was significantly
longer after the 40:8 hr LD cycle and the downward mean crossing
time occurred at a significantly later clock time (P < 0.05 in all
cases, Duncan’s multiple range test). No significant differences were
found in the timing of the upward mean crossing time.
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concentrations with lower melatonin levels during supine
positions [46, 47]. A standing position results in a redistri-
bution of the blood onto the lower parts of the body, which
includes the dependent arms and legs. This produces an

increase in hydrostatic pressure in the lower extremities
leading to a decrease in plasma volume. This change is
associated with an increase in plasma constituents, partic-

ularly that of proteins and blood constituents bound to
them [48]. Hence, hormones, such as melatonin bound to
plasma proteins, may be affected by a posture change.

However, we have no evidence from the present study that
our phase markers (upward and downward mean crossing
times) were affected by posture. It is likely that the present
data indicate that SD indeed may effect phase of the human

circadian pacemaker and that these effects are greater than
those predicted from the light exposure which accompanies
the SD.

The significant day-to-day variation in the duration of
melatonin secretion (width of melatonin profile) indicates
variation in the waveform in response to the imposed light–
dark and sleep–wake cycle. The significantly greater day-

to-day variability in the downward mean crossing is in
accordance with previous reports of greater variability
in changes in the dim light melatonin offset (DLMoff)

than in the dim light melatonin onset [49]. The increase in
the duration of the interval between upward and down-
ward mean crossing was related to a significantly greater

phase delay in the downward mean crossing time than in
the upward mean crossing, in particular during the sleep
episodes following SD. This could reflect an acute non-
photic effect of sleep structure after total SD or an effect

of the imposed 40:8 light–dark cycle in dim light on the
timing of the melatonin offset. Changes in the waveform
of the melatonin rhythm could reflect changes in the X

variable of the Van der Pol Oscillator. Alternatively, the
upward and downward crossings may be controlled by
two separate oscillators: an evening and a morning

oscillator (E–M oscillator), as shown in rats [50]. Wehr
has argued that changes in the waveform of melatonin in
humans reflects changes in the phase relationship between

M and E [51]. If the two-oscillator models can be applied
to humans, the onset and offset oscillators are tightly
coupled and maintain a constant phase relationship under
most conditions (e.g. 16:8 light–dark cycle) [52] and is not

markedly changed in blind individuals [53]. The acute
change in the light–dark cycle from 16:8 to 40:8 in our
study could have induced a slight modification in the

phase relationship between melatonin onset and offset,
reflected in a transient looser coupling between these
oscillators.

Phase resetting experiments have previously demonstra-
ted that the human circadian pacemaker is very sensitive to
dim light [7, 12] and can be entrained by a regular dim

light–dark cycle (16:8) and the associated sleep–wake cycle
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Fig. 8. Comparison of the day-to-day
variability of the phase markers (upward,
downward, and midpoint) with predicted
values using Kronauer’s light model [15].
For the simulations, three light intensities
were used during scheduled wakefulness
(1, 5, and 13 lux) with a light–dark cycle
of 16:8 during days 2, 3, 6, and 7 and 40:8
light–dark cycle from days 4 to 5 and from
days 8 to 9, respectively. Experimental
data represent mean values (n ¼ 10; ±1
S.E.M.).
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Fig. 7. Average plasma melatonin profile during the supine and the
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plotted relative to the melatonin midpoint (0).

Human pacemaker in dim light and sleep deprivation

155



[14]. The current data demonstrate that the human circa-
dian pacemaker is so sensitive to dim light and/or the
absence or presence of sleep that substituting one 8 hr

sleep/dark episode by wakefulness in 5–13 lux can signifi-
cantly disturb the stability of circadian phase – even under
lighting conditions that are a magnitude above the predic-
ted illuminance levels for human circadian entrainment.

Our data indicate that short-term SD influences the process
of clock adjustment in humans.
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