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The circadian clock orchestrates many aspects of human physiology,
and disruption of this clock has been implicated in various pathol-
ogies, ranging from cancer to metabolic syndrome and diabetes.
Although there is evidence that metabolism and the circadian
clockwork are intimately linked on a transcriptional level, whether
these effects are directly under clock control or are mediated by the
rest–activity cycle and the timing of food intake is unclear. To answer
this question, we conducted an unbiased screen in human subjects
of the metabolome of blood plasma and saliva at different times of
day. To minimize indirect effects, subjects were kept in a 40-h con-
stant routine of enforced posture, constant dim light, hourly isoca-
loric meals, and sleep deprivation. Under these conditions, we found
that ∼15% of all identified metabolites in plasma and saliva were
under circadian control, most notably fatty acids in plasma and
amino acids in saliva. Our data suggest that there is a strong direct
effect of the endogenous circadian clock on multiple human meta-
bolic pathways that is independent of sleep or feeding. In addition,
they identifymultiple potential small-molecule biomarkers of human
circadian phase and sleep pressure.
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The circadian clock has been shown to modulate many aspects
of behavior and physiology (1). It is thought to be an im-

portant regulator of metabolism, and disruption of the clock and
sleep is associated with obesity, metabolic syndrome, and type
2 diabetes, as well as other disorders (2–4). In the last decade,
ample data on the circadian transcriptome (5, 6) and the even
larger circadian proteome (7) have been compiled. These data-
sets are directly dependent on the genome of a particular species
and cannot be compared easily between model systems. How-
ever, changes in physiology and metabolism governed by these
genes and proteins ultimately affect the abundance of small
metabolites that are quite conserved among species and fewer
in number (50-fold fewer than transcripts and 500-fold fewer
than proteins).
The relationship between metabolism and the clock is not

unidirectional, and the two processes are intertwined (8). For
example, metabolic status feeds back to the clock, so that feeding
behavior directly entrains molecular clock function (9). Likewise,
obesity is correlated with poor sleep (2), and in mice 80% of
circadian transcription in the brain is dependent on the rest–ac-
tivity cycle (10). Given these feedback mechanisms, it is unclear
what proportion of circadian metabolic control is directly clock-
regulated and what proportion is controlled by circadian rest–
activity and food intake.
In plants, the metabolome approach has been used to charac-

terize the effects of clock disruption on general metabolism (11).
The circadian metabolome also has been characterized in CBA/N
mice, and ∼20% of the recorded molecules were found to vary in
abundance with time of day (12). Similarly, the urine and saliva
metabolomes of human subjects differ between morning and
evening under real-world conditions (13, 14). However, in mam-
mals, indirect cues from behavior, such as feeding time and body
temperature, are well-established and potent timing signals to the
circadian clock (9, 15). Thus, whether significant numbers of these
metabolites are a consequence of circadian patterns of eating and

sleeping remains unclear. This knowledge would be critical to
effective chronotherapy of metabolic disorders.
To answer this question in human subjects, we used GC/LC

coupled with MS in an unbiased screen of the human metabolome
of blood plasma and saliva at different times of day.We found that
15% of all identified metabolites in plasma and saliva were under
circadian control, independent of sleep or food intake. This indi-
cates that the clock directly controls multiple metabolic pathways,
most notably fatty acids in plasma and amino acids in saliva.

Results
Metabolome from Human Plasma Shows That Circadian Metabolism Is
Independent of Rhythmic Feeding or Rest–Activity Cycles. The con-
tribution of rest–activity and feeding patterns to circadian
metabolomic variation is most easily investigated using human
subjects, whose patterns of eating and sleeping can be precisely
and rigorously controlled. Subjects were kept in a 40-h “constant
routine” of enforced posture, constant dim light, hourly iso-
caloric meals, and sleep deprivation to exclude indirect effects
(16, 17). Saliva and blood plasma were collected hourly and
subsequently analyzed by GC/LC-MS. These matrices have been
shown to yield valuable information regarding human metabolic
state (13, 18) and are easy to obtain.
A total of 10 age-matchedmale subjects underwent the protocol

(Fig. 1A) individually in isolation. Samples were pooled in 4-h
intervals for two groups of five subjects, and relative levels of
metabolites were determined (Fig. 1 andMethods). As a first step,
our GC/LC-MS measurement procedure was independently vali-
dated with separate ELISA analyses to determine the subjects’
cortisol levels. The pattern of cortisol levels was highly correlated
between ELISA and GC/LC-MS (Pearson’s r = 0.8; P < 0.0001)
(Fig. 1B), confirming the validity of GC/LC-MS quantification.
Second, to assess the degree of interindividual variation, we used
GC/LC-MS to measure the plasma metabolome of two subjects
from one pool and compare the findings with each other and with
the average of the pool. Cross-correlation analysis showed highly
similar circadian cortisol profiles from the two pools (pool 1 vs.
pool 2, r=0.9784, P< 0.0001). Similarly, each subject was globally
similar to the pool (pool 2 vs. individual A, r= 0.9, P < 0.001; pool
2 vs. individual B, r = 0.9, P < 0.002) (Fig. 1C), and subjects were
similar to one another (individual A vs. individual B, r = 0.8, P <
0.02). Overall, of the 258 metabolites identified in both individu-
als, 219 metabolites were found in each of the individuals and the
pools, consistent with results of previous studies of interindividual
metabolomic variation (18).
We next measured all identifiable metabolites in all samples by

GC/LC-MS. In the plasma pools, ∼15% of the metabolites (41 of
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281) displayed a circadian profile (Figs. 2A and 3C). In-
terestingly, a high proportion of these rhythmic metabolites were
fatty acids (Figs. 2C and 3A). The levels of nearly all lipid
products were highest at midmorning to noon and were signifi-
cantly lower at other times of the day (Figs. 2D and 3), even
though food intake was constant and sleep did not occur.

Human Salivary Metabolome also Shows Circadian Metabolism
Independent of Sleep and Food. We determined the salivary
metabolome from the same pools of subjects as for plasma (Fig.
2B). Saliva is easily obtained through noninvasive means, and thus
has great potential for screening large cohorts. Although we
identified fewer metabolites in saliva than in plasma (178 vs. 281),
as in plasma, ∼15% of these metabolites (29 of 178) had a circa-
dian profile (Fig. 3D). Not surprisingly, only approximately half of
all saliva metabolites (88 compounds) were also detected in
plasma. Although parotid saliva directly reflects the contents of
blood (19), the overall content of metabolites in globally collected
saliva also depends on other glands, most prominently the sub-
mandibular glands (20). Among the common metabolites detec-
ted, 27 were rhythmic in either plasma or saliva. In contrast to the
plasma samples, the largest group of compounds in saliva was
amino acids (Figs. 2E and 3B). These amino acids exhibited
a large phase distribution around the clock (Fig. 3 B andD), likely
related to the diverse pathways in which they are involved.

Discussion
Several previous pathway-specific studies of amino acids have
suggested that aspects of human metabolism are circadian (21–
23). Our global circadian metabolomic analysis has shown that in
fact this control extends to 15% of the human circadian metab-
olome in two different matrices. Moreover, we have demon-
strated that this circadian control occurs independent of
scheduled sleep and feeding. A similar proportion of rhythmic
metabolites has been found to cycle in mice under ad libitum

feeding conditions (12). In that earlier study and the present
study, this proportion is likely a conservative estimate, given that
the procedure used for detection in these protocols can possibly
result in degradation of unstable substances (which are more
likely than stable substances to show the effects of upstream cir-
cadian modulation). Nevertheless, the percentage of rhythmic
substances that we found in the metabolome is roughly compa-
rable to that found in previous transcriptome (10–20%) (5, 6) and
proteome (20%) (7) analyses.
Although the percentage of circadian metabolites is compa-

rable to the percentages of circadian transcripts and proteins in
both mice and humans, in one respect our results are quite
surprising. Previous work has shown that on the transcriptional
level, >75% of genes expressed rhythmically under ad libitum or
restricted feeding conditions do not remain rhythmic when mice
are fasted (24). Similarly, in the brain, only 20% of circadian
transcripts remain so when mice are sleep-deprived (10).
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Fig. 1. (A) Experimental design. Scheme of the 40-h extended wakefulness
constant routine, sampling, and pooling of samples. For detailed explanations
of the sampling and pooling procedures, see Methods. Black bars indicate
sleep; open bars, extended wakefulness; red lines, sampling of blood and
saliva; gray lines, isocaloric meals. Samples on either side of the circled
numbers were pooled together for MS analysis. (B) Comparison of rhythmic
cortisol levels measured by LC-MS (red) and ELISA (blue) from plasma and
saliva, respectively, of the same subject pools. (C) Comparison of individuals
with the pool in which they were used. 33
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Fig. 2. Heat plots for all identified metabolites in plasma (A) and saliva (B).
The black bar indicates circadian metabolites, and the gray bar indicates
monotonic increasing/decreasing metabolites. High levels of metabolites are
shown in red (plasma) and yellow (saliva), and low levels are shown in green
(plasma) and blue (saliva). (C–F) Pathway analyses (C and E) and time-of-day
distribution (D and F) of peak phases of rhythmicmetabolites in plasma (C and
D) and saliva (E and F). Pathways are color-coded as follows: blue, lipids; or-
ange, energy metabolism; gray, peptides; red, amino acids; green, carbohy-
drates; yellow, cofactors and vitamins.
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Whereas the latter result can be explained by the fact that few
cortical transcripts are likely to affect the plasma or saliva
metabolome, the former results offer no ready explanation,
given that the authors specifically examined transcription of
metabolic regulators in the most relevant tissue (liver). We
speculate that the restricted feeding conditions of that study
might have provided a systemic metabolic signal very different
from that provided by the frequent isocaloric meals consumed
by the much larger human subjects in the present study, because
24 h of food deprivation has significant consequences for
a small rodent, typically resulting in a loss of 10–15% of body
weight (25).
In human blood plasma, lipid metabolites represent >75% of

all rhythmic compounds. It has been suggested that fatty acid

metabolism is under circadian control (3), but whether this is
a direct effect of clocks on fatty acid oxidation or rather an in-
direct effect mediated via food intake or activity and its associ-
ated changes in body temperature remains an open question
(23). We found that this variation is not an indirect effect, but
rather is directly controlled by the circadian clock. The levels of
nearly all lipid products were highest around subjective “lunch-
time” and were greatly reduced at other times of the day, even
though food intake was constant. Interestingly, metabolic syn-
drome has been reported to be associated with a flattening of
molecular clock rhythms in peripheral tissues (26) and with
nighttime eating (27), and thus our results are consistent with the
idea that direct clock control can serve to “scavenge” harmful
fatty acids from the bloodstream at inappropriate times.
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Fig. 3. Rhythmic metabolites in plasma and saliva. (A and B) Profiles of substances previously implicated in sleep–wake regulation. (C and D) Heat maps of all
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In our saliva samples, more than half of all rhythmic com-
pounds were amino acids and associated metabolites. It has been
suggested that the plasma content of branched-chain amino acids
is predictive of future diabetes (28). In our samples, the average
levels of these amino acids varied by 20–200% over the 24-h day,
which is equal to or up to 10-fold greater than the differences
considered diagnostic of diabetes. Similarly, in a recent genome-
wide analysis of genetic determinants of metabolic variation, an
allele of the glucokinase regulator gene was reportedly associated
with an increased risk of various chronic diseases and with
a 3.3% per copy increase in lactate levels (29). In the present
study, lactate levels varied by >20-fold as much over the day,
illustrating the magnitude of the effects that can be observed.
Interestingly, in the aforementioned study, the proportion of
rhythmic metabolites among those associated with the genomic
traits was only ∼7% (29), suggesting that rhythmic metabolites
are underrepresented, and that the associations could be im-
proved if time of day were taken into account.
Overall, the major circadian pathway signatures of the human

metabolome that we have identified are consistent with those
previously described in rodents (12), in which amino acids as well
as some fatty acid byproducts were identified. Along with the
large number of metabolites with circadian expression profiles,
we also found 34 metabolites in plasma and 27 in saliva that
demonstrated a monotonic increase or decrease across the 40-h
constant routine protocol (Fig. S1). Because our constant rou-
tine protocol was conducted under sleep deprivation conditions,
it is possible that some of these metabolites might be associated
with sleep pressure. For example, we found a more than three-
fold increase in two fragments of the C3 complement (30). Up-
regulation of the immune system in general and the C3 com-
plement in particular has been reported in sleep deprivation in
humans (31). These polypeptides also have been implicated in
the regulation of insulin-like growth factor 1 activity (30), which
is also linked to sleep (32). Another metabolite, 3-hydrox-
ybutyrate, found to be up-regulated in saliva by 1.5-fold and in
plasma by 2.5-fold has been implicated in a rapid eye movement
sleep feature (33). A noninvasive biomarker for sleep pressure
would be of great practical use, given the well-characterized
detrimental effects of sleep deprivation. Because our study did
not explicitly compare subjects under different sleep pressures at
the same circadian time, further investigations are clearly needed
to confirm whether any of these substances are indeed correlated
with time awake.
Taken together, our experiments provide data that could be

useful for at least three types of future studies. First, knowledge of
the metabolites identified here can help identify novel physio-
logical pathways regulated by the circadian clock, and possibly by
time awake, in humans. Second, metabolome profiles from
pathophysiological populations can be compared with our data
and used to identify pathways in which the circadian clock might
play a role. Already metabolome profiling has proven to be a po-
tent tool for detecting human pathologies such as cancer (34, 35),
predicting the risk for certain diseases such as diabetes (28), and
indicating early signs of insulin resistance (36). Circadian metab-
olome profiling can provide a convenient way to analyze clock
involvement and also can improve the predictive validity of bio-
markers. Third, our set of metabolites might be used to validate
biomarkers for circadian phase and sleep pressure. Detection of
such molecules, if validated, could provide convenient and non-
invasive assays for circadian phase (12) and sleep pressure.

Methods
Study Subjects. The study cohort comprised 10 healthy unmedicated male
volunteers. A general description of recruitment and demographic and sleep-
relevant parameters of the study population are provided in SI Methods and
Table S1. After receiving a detailed explanation of the study protocol, each
participant provided written informed consent. The study conformed to the
Declaration of Helsinki and was approved by the local Ethics Committee
(Ethische Kommission beider Basel).

Study Design and Sample Preparation. For the constant routine study, partic-
ipants came to the laboratory for a baseline night of sleep, whichwas followed
by 40 h of prolonged wakefulness and then a recovery night, as described
previously (37). At all times, participantswere in a semirecliningposition in bed
in a room with constant illumination level (<5 l×) and temperature (∼21 °C).
Throughout the awake part of the study, participants received small isocaloric
meals as well as water once every hour. To prevent thrombosis, all participants
received heparin (0.2 mL Fragmin) every 20 h. A technician prevented the
participants from falling asleep during the 40 h of wakefulness. No in-
formation about clock time was available to the participants.

Hourly samples of blood and saliva were obtained during the period of
extended wakefulness. Blood was collected via cannula from the forearm in
sterile vacutainers (6-mL BD Vacutainer with 10.8 mg of K2EDTA). Plasma was
immediately separated by centrifugation (1650 × g at 4 °C for 10 min) and
stored at −20 °C until analysis. Saliva samples were collected with Sarstedt
Salivettes and centrifuged before freezing at −20 °C until pooling. This
protocol is diagrammed in Fig. 1A.

Metabolites of plasma and saliva were analyzed independently in two
pools of five individuals each and also in two individuals from one pool. Each
sample was pooled from equal volumes of two consecutive hourly samples,
for a total of 10 samples from each case. Sampling was done at 4-h intervals,
with sample 1 collected at the beginning of the constant routine and sample
10 collected 40 h later. MS values were verified by direct salivary ELISA
(ALPCO) in all samples from all participants.

Small-Molecule Determination.Metabolites inplasmaand salivawereanalyzed
by Metabolon, as described previously (18). In this method, the total process
variability of metabolites was calculated as the relative standard variation of
six runs of a pool of equal aliquots from each of the experimental samples.
The variation among these six replicates was 8% in plasma and 10% in saliva.
In addition, internal standards were injected into each of the samples; here
the variability was 5% in plasma and 6% in saliva. Raw peak values for all
metabolites were normalized to have a median of 1. Because the absolute
levels and thus the lower limit of detection were unknown, missing values
were replaced by theminimumvalues observed for any givenmetabolite. This
procedure prevented overestimation of circadian amplitude in less abundant
substances, whose true minimum values are unknown. Overall, <3% of all
data points for all metaboliteswere replaced in this fashion for pooled plasma
and saliva samples. Only one metabolite had to be excluded from rhythmic
analysis because of missing values. Complete datasets for plasma and saliva
pools are provided in Tables S1, S2, S3, S4, S5, and S6.

Statistics. Rhythmicity of metabolites was assessed using an algorithm pre-
viously described for rhythmic transcripts. The JTK-cycle algorithm (38, 39)
was used as implemented in R by Kronauer. In brief, this algorithm charac-
terizes samples as rhythmic or nonrhythmic using a nonparametric method
based on a combination of the Jonckheere–Terpstra test for monotonic or-
dering and Kendall’s τ test for association of measured quantities. Results
were cross-checked by visual inspection. Subsequently, the statistical signif-
icance of the circadian rhythmicity of each compound was evaluated with an
independent permutation test to identify the false discovery rate for each
metabolite (40). A detailed description of this procedure is provided in SI
Methods. Pearson correlation coefficients and significance levels were
computed using Prism 5 (GraphPad).
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