
AUTHOR QUERY FORM

Journal title:  JBR

Article Number:  391619

Dear Author/editor,

Greetings, and thank you for publishing with SAGe. Your article has been copyedited, and we have a few queries 
for you. Please respond to these queries when you submit your changes to the Production editor.

Thank you for your time and effort.

Please assist us by clarifying the following queries:

No Query

1 Please provide missing word(s).



1

1. Current address: Department of Clinical Psychology, Psychotherapy, and Health Psychology, Institute of Psychology, 
University of Salzburg, Salzburg, Austria.
2. To whom all correspondence should be addressed: Vitaliy Kolodyazhniy, Department of Clinical Psychology, Psychotherapy, 
and Health Psychology, Institute of Psychology, University of Salzburg, Salzburg, Austria; e-mail: v.kolodyazhniy@unibas.ch.

JOURNALOF BIOLOGICALRHYTHMS, Vol. XX No. X, Month XXXX  xx-xx
DOI: 10.1177/0748730410391619
© 2010 SAGe Publications

estimation of Human Circadian Phase  
via a Multi-Channel Ambulatory Monitoring  

System and a Multiple Regression Model

Vitaliy Kolodyazhniy,*,1,2 Jakub Späti,† Sylvia Frey,† Thomas Götz,‡ Anna Wirz-Justice,† 
Kurt Kräuchi,† Christian Cajochen,† and Frank H. Wilhelm*,1

*Department of Clinical Psychology and Psychotherapy, Faculty for Psychology,  
University of Basel, Basel, Switzerland, †Centre for Chronobiology, University Psychiatric Clinics,

Basel, Switzerland, and ‡Central Admission Unit, University Psychiatric Clinics, Basel, Switzerland

Abstract Reliable detection of circadian phase in humans using noninvasive 
ambulatory measurements in real-life conditions is challenging and still an 
unsolved problem. The masking effects of everyday behavior and environmen-
tal input such as physical activity and light on the measured variables need to 
be considered critically. Here, we aimed at developing techniques for estimat-
ing circadian phase with the lowest subject burden possible, that is, without the 
need of constant routine (CR) laboratory conditions or without measuring the 
standard circadian markers, (rectal) core body temperature (CBT), and melato-
nin levels. In this validation study, subjects (N = 16) wore multi-channel ambu-
latory monitoring devices and went about their daily routine for 1 week. The 
devices measured a large number of physiological, behavioral, and environ-
mental variables, including CBT, skin temperatures, cardiovascular and respi-
ratory function, movement/posture, ambient temperature, and the spectral 
composition and intensity of light received at eye level. Sleep diaries were 
logged electronically. After the ambulatory phase, subjects underwent a 32-h 
CR procedure in the laboratory for measuring unmasked circadian phase based 
on the “midpoint” of the salivary melatonin profile. To overcome the complex 
masking effects of confounding variables during ambulatory measurements, 
multiple regression techniques were applied in combination with the cross-
validation approach to subject-independent prediction of circadian phase. 
The most accurate estimate of circadian phase was achieved using skin tem-
peratures, irradiance for ambient light in the blue spectral band, and motion 
acceleration as predictors with lags of up to 24 h. Multiple regression showed 
statistically significant improvement of variance of prediction error over the 
traditional approaches to determining circadian phase based on single pre-
dictors (motion acceleration or sleep log), although CBT was intentionally not 
included as the predictor. Compared to CBT alone, our method resulted in a 
40% smaller range of prediction errors and a nonsignificant reduction of error 
variance. The proposed noninvasive measurement method could find applica-
tions in sleep medicine or in other domains where knowing the exact endoge-
nous circadian phase is important (e.g., for the timing of light therapy).

Key words    human circadian rhythms, multi-channel ambulatory recording, 
skin temperatures, ambient light, melatonin, curve fitting, regres-
sion modeling
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The circadian system, driven by a circadian pace-
maker located in the suprachiasmatic nuclei (SCN) 
of the hypothalamus, enables organisms to anticipate 
daily environmental changes by adjusting behavior, 
physiology, and gene regulation. A critical feature and 
the key to understanding the circadian clock and 
its control mechanisms is its synchronization to the 
external day (i.e., circadian entrainment). Under nat-
ural conditions, endogenous circadian rhythms are 
entrained to the 24-h external solar light-dark cycle 
(for a review, see Roenneberg et al., 2003). In humans, 
daily rhythms can be seen in a variety of molecular, 
physiological, and psychological measures ranging 
from gene expression, CBT, heart rate, the pineal hor-
mone melatonin, cortisol secretion to subjective sleep 
and mood, as well as higher cognitive functions (for a 
review, see Schmidt et al., 2007). Variables such as CBT 
and endogenous melatonin and cortisol levels have 
been widely used to estimate parameters of the circa-
dian system such as phase, amplitude, and endogenous 
period. However, in daily life situations, such estima-
tion is complicated by “masking” effects (Minors and 
Waterhouse, 1989; Hiddinga et al., 1997) induced by 
sleep, physical activity, meals, emotional activation, 
and others, all of which have an effect on the measured 
variables to a different extent (Wilhelm and Grossman, 
2010; Wilhelm et al., 2006). Melatonin is considered to 
be the best circadian marker and has least variability 
compared to CBT and cortisol (Klerman et al., 2002). 
However, measuring the secretion of hormones is very 
expensive and can be reliably done only under laboratory 
conditions so far. CBT is also a good circadian marker 
but is more sensitive to masking effects than mela-
tonin or cortisol, and measurement of CBT is compli-
cated because of the use of probes that must be worn 
inside the body (most often, these are rectal probes).

There are many reports that discuss the complexity 
of estimating the relationship between physiological 
data and endogenous circadian phase (Klerman et al., 
1999; Minors and Waterhouse, 1989; Carrier and Monk, 
1997; eastman, 1992). However, in these works, only a 
limited number of physiological variables were used, 
and the demasking techniques were univariate or 
based on relatively simple heuristics using techniques 
such as subtracting or adding an amount to a circa-
dian variable such as CBT, depending on the activity 
of the subject.

Thus, for accurate estimation of endogenous circa-
dian phase using ambulatory data, it would be neces-
sary to take multiple physiological and behavioral 

parameters into account that contain both circadian 
and masking components (e.g., skin temperatures, 
heart rate, motion acceleration) as well as measure-
ments of ambient light as the “zeitgeber” that contrib-
utes most to the entrainment of the human circadian 
clock. The relation between the ambulatory measure-
ments and endogenous phase measured in the labo-
ratory under CR conditions could be established 
using a “gold standard” circadian marker such as 
melatonin. Upon collection of data from a represen-
tative sample of subjects, including a wide range of 
chronotypes, and after identification of ambula-
tory variables that provide the best accuracy of the 
estimation of endogenous circadian phase using 
statistical techniques, subject-independent predic-
tion models could be obtained. With such models, 
estimation of circadian phase in real-life conditions 
could be possible without the need to stay in the 
laboratory.

The eU FP6 integrated project eUCLOCK (www 
.euclock.eu) extends previous research, taking into 
account these points. One of the most important 
aims of the human subproject is to estimate circadian 
phase using measurements provided by an ambula-
tory multi-channel circadian monitoring system and 
advanced modeling algorithms with low burden on 
the test subject, that is, without the need for staying in 
the laboratory under CR conditions and without inva-
sive CBT and expensive melatonin or cortisol mea-
surements.

In this article, we have used multi-channel ambula-
tory monitoring with multiple variables as well as 
multiple regression techniques for extraction of the 
underlying circadian rhythm in combination with 
numeric optimization procedures for waveform anal-
ysis (Van Someren and Nagtegaal, 2007). We describe 
the first results of prediction of ambulatory human 
circadian phase under entrainment and subject-
independent prediction models developed within the 
project eUCLOCK.

MATERIALS AND METHODS

Protocol

Figure 1 illustrates the overall design of the ambula-
tory circadian monitoring validation study. The pro-
tocol involved 2 parts: first, the volunteers went 
about their usual everyday activities for approximately 
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7 days, and then they reported to the chronobi-
ology laboratory at the University Psychiatric 
Clinics (UPK Basel), where they spent about 44 h, 
including 1 night with sleep at habitual bed times 
(8 h) and 32 h of scheduled wakefulness under CR 
conditions.

The ambulatory measurements began between 
1100 h and 1700 h, always on a Friday. During the 
ambulatory 7-day episode, subjects kept their usual 
bed-time regimen, registered by actimetry and sleep 
logs. In addition, they kept a daily log about their 
subjective well-being, fatigue, sleepiness, and so on. 
Besides the rest-activity cycle, the following physiolog-
ical signals were recorded continuously with a wear-
able multi-channel ambulatory monitoring device: 
eCG, rectal temperature, and respiration. Skin tem-
peratures from 11 locations were recorded with 
miniature autonomous loggers. In addition, ambient 
light was recorded by a miniature light sensor attached 
to the side of eyeglasses (either subjects’ own or 
zero dioptric with a normal frame provided by the 
experimenters).

The laboratory part of the study started on the fol-
lowing Friday between 1900 h and 2100 h and ended 
on Sunday between 1500 h and 1800 h. All ambula-
tory recordings continued in the laboratory until 
the end of the protocol. The timing of the adapta-
tion night (8 h) and of the immediately following 
CR (32 h) was scheduled according to the sleep 
midpoint during the ambulatory week as deter-
mined from sleep logs. Posture, food, ambient light, 
and temperature levels were kept constant or dis-
tributed uniformly across the CR protocol in order 
to minimize masking effects of those variables and 
to enable us to quantify phase and amplitude of the 
circadian markers. The light level was ≤8 lux. For 

further details on the CR procedure, 
see Cajochen et al. (2001).

The primary circadian marker dur-
ing the CR was melatonin. Thus, 
saliva samples were collected every 
60 min throughout the CR. CBT was 
continuously recorded throughout 
the protocol, that is, for 7 days during 
the ambulatory part and 2 days in the 
laboratory. CBT recordings were used 
for an additional comparison of pre-
dictions of circadian phase provided 
by the model proposed in this article, 
as were sleep logs acquired via elec-

tronic diaries. The study protocol was approved by 
the local ethical committee (ethikkommission beider 
Basel) and conformed to the Declaration of Helsinki.

Subjects

Twenty-one male subjects were recruited. 
Participants were selected according to their habit-
ual bed times to form a representative dataset includ-
ing a wide range of chronotypes from evening to 
morning types. The chronotype of potential study 
participants was assessed as midsleep on free days 
corrected for sleep deficit (MSFsc) using the Munich 
chronotype questionnaire (Roenneberg et al., 2007), 
which they could download from the Web site of the 
Centre for Chronobiology (www.chronobiology.ch). 
Only healthy nonsmoking subjects 19 to 35 years 
old who lived on a normally entrained 24-h sched-
ule and had no self-reported sleep problems were 
selected. The reason why only male subjects were stud-
ied was a practical one since in women, the entire tim-
ing of the protocol would have had to be adjusted to 
their menstrual cycle.

Study participants signed a written informed con-
sent form before being enrolled in the study and 
underwent a medical examination at UPK Basel prior 
to participation. The complete protocol was carried 
out successfully by 16 subjects (mean age ± SD, 24.6 ± 
4.3 years). Measurements with the other 5 subjects 
were interrupted because of initial technical problems 
like loose contacts and broken cables in the measure-
ment devices (4 subjects) and noncompliance to the 
protocol (1 subject). Thus, the overall success rate in 
our difficult and time-demanding protocol was about 
76%. Data were collected in the period from July 2008 
to November 2009.

Figure 1. Overall protocol design and typical CBT measurements for one representa-
tive subject. Dark bars correspond to sleep, ticks on the x-axis correspond to mid-
nights, and hatched area is the CR. The protocol starts on a Friday.
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Ambulatory Monitoring Devices

A prototype of the ambulatory circadian moni-
toring device “ClockWatcher” for ambulatory studies 
within the eUCLOCK Project was developed by 
Personal Health Institute International (Phi-I) in 
Amsterdam (Fig. 2). The ClockWatcher is designed to 
record the following variables in real-life conditions 
over multiple days:

• CBT (measured with a disposable rectal probe);
• eCG (recorded with solid gel electrodes; each subject 

was given additional electrodes and instructed to 
replace them daily);

• respiration (recorded with 2 belts for thorax and abdomen);
• body movement and posture (measured with a 

3-dimensional accelerometer);
• leg movement (measured with a 1-dimensional acceler-

ometer); and
• event markers (going to sleep/taking shower).

Additionally, an “off-the-shelf” monitoring device 
(Varioport, Becker Meditec, Karlsruhe, Germany) was 
acquired in order to expedite the development of the 
ambulatory circadian models (Fig. 2). The Varioport 
device had custom-made signal preamplifiers that 
allowed them to be used for recording the same set 
of variables as with the ClockWatcher. Of 21 subjects 
who took part in our validation study, 8 wore the 
ClockWatcher and 13 the Varioport throughout the 
experiment. With the ClockWatcher, 5 complete data-
sets were obtained and 11 with the Varioport. Using 
calibration and our MATLAB software (MathWorks, 

Natick, MA), all data from both devices 
were brought to the same ranges to facili-
tate further model development irre-
spective of the device type. For details 
of our circadian software and data orga-
nization, see the supplementary online 
material.

For recording ambient light, a spe-
cialized miniature ambulatory monitor-
ing device “LightWatcher” was also 
developed within the eUCLOCK Project 
by Sowoon (Lausanne, Switzerland) 
(Fig. 2). It has the following measure-
ment channels:

•  light in 5 spectral bands (infrared, red, 
green, blue, ultraviolet);

•  3-dimensional acceleration (motion along 
axes X, Y, and Z, used for compliance 
check); and

• ambient temperature.

eleven miniature wireless temperature sensors 
(DS 1922L Thermochron iButtons, diameter × height: 
17 × 6 mm, accuracy: 0.0625 °C, Maxim Integrated 
Products, Sunnyvale, CA) were used to record skin 
temperatures continuously in 2.5-min intervals through-
out the protocol (Smith et al., 2010). The iButtons were 
fixed to the skin with thin, air-permeable adhesive 
surgical tape (Fixomull, Beiersdorf AG, Hamburg, 
Germany) on the left and right side of the body 
(except for thorax), as shown in Figure 2. The tempera-
ture sensors can be worn under normal life condi-
tions including taking a shower and doing sports. 
The iButtons were applied by the experimenters at the 
beginning of the protocol and were worn through-
out. each subject was given approximately 50 pieces 
of adhesive tape 50 × 50 mm in size and instructed to 
replace them when necessary so that the temperature 
sensors stayed in good contact with the skin and at 
the same locations. All the sensors were numbered, 
and the subjects received a diagram showing the 
correct locations of the sensors on the skin according 
to the numbering, which were checked again in the 
laboratory before the CR.

Handheld computers of type Palm Tungsten e 
(Sunnyvale, CA) were used as an electronic diary. 
Questionnaires for sleep logs and a number of other 
scales and fill-in forms were programmed with 
Pendragon Forms software v. 4.0 (Libertyville, IL). 
For more details on the sleep logs, see the supple-
mentary online material.

Figure 2. Ambulatory monitoring devices: 1) ClockWatcher: ECG, respiration, 
3-dimensional acceleration, core body temperature; 2) Varioport: same channels as 
ClockWatcher; 3) Light sensor: ambient light, temperature, and 3-dimensional 
acceleration (for compliance check); 4) Palm computer: electronic diary (E-Diary); 
and 5) iButton: position of skin temperature measurements.
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The clocks of all devices were synchronized at the 
beginning of the measurements with the master PC 
that was used for collecting and processing the data. 
The deviation of the clocks from the master clock after 
completing the entire protocol for each subject did 
not exceed ±3 min. Checking and transferring the 
measured data are explained in the supplementary 
online material.

Reference Circadian Phase

For model development, the reference circadian 
phase was determined based on salivary melatonin 
secretion in the laboratory part of the experiment 
under CR. Melatonin was used as a reference for the 
following reasons: it is known to be the most reliable 
circadian marker, also compared to CBT (Klerman 
et al., 2002); reliable measurements of melatonin 
secretion were available for all 16 subjects throughout 
the CR, whereas the CBT measurements for 4 subjects 
contained artifacts that complicated reliable detection 
of the underlying circadian rhythm. For 1 more sub-
ject, the CBT measurements in the laboratory were 
not available for more than half of the CR because of 
a technical problem.

First, the reference waveform of melatonin secre-
tion was determined based on melatonin levels from 
33 saliva samples taken every 60 min under CR condi-
tions. This waveform was assumed to have a period of 
24 h and was identified using the bimodal skewed 
baseline cosine function (BSBCF) (Van Someren and 
Nagtegaal, 2007). For details, see “Waveform analysis” 
in the supplementary online material.

The reference circadian phase was determined as 
the time corresponding to the center of gravity (COG) 
of the area (Wetterberg, 1998) under the periodic 
BSBCF curve for one period of 24 h (see “Calculation 
of circadian phase” in the supplementary online mate-
rial). With the COG method, no thresholds need to be 
defined for determining circadian phase from the 
BSBCF curve because the threshold is always equal to 
the baseline, in contrast, for example, to the original 
work (Van Someren and Nagtegaal, 2007), where the 
phase of the BSBCF curve is defined as the midpoint 
at 25% level and may need to be adjusted if there is a 
narrow peak or 2 peaks very different in amplitude, 
with one of them below 25%.

Multiple Regression Modeling

The prediction model that we use is defined in a 
general form as

ŷ(t) = a1,0x1(t) + a1,1x1(t - ∆t) + … + a1,d1
x1(t - d1∆t)

 + a2,0x2(t) + a2,1x2(t - ∆t) + … + a2,d2
x2(t - d2∆t)

 …
 + an,0 xn(t) + an,1xn(t - ∆t) + … + an,dn

xn(t - dn∆t) + b,

where ŷ(t) is the predicted value of the circadian 
rhythm at time t; t is the time in hours; x1, K, xn are the 
predictor variables; d1, K, dn are their respective lags 
defined as a multiple of the sampling interval ∆t = 0.5 
h; a1,0, … , an,dn

 are coefficients of the predictor vari-
ables; and b is the bias term. The parameters a1,0, … , 
an,dn

 and b are identified using the least-squares 
method. The choice of lags d1, K, dn is described in the 
“Variable selection” section of the supplementary 
online material.

For determining the parameters of the prediction 
models (Fig. 3A), data including both the ambulatory 
and laboratory parts were used. The reference circa-
dian rhythm for model identification was derived 
based on salivary melatonin secretion in the labora-
tory by fitting the BSBCF curve and extrapolating it onto 
the ambulatory part. To ensure subject-independent 
testing with data unseen during model identification, 
the models were identified using the so-called cross-
validation approach (Hastie et al., 2001). For an 
explanation of this approach, see Figure 3B and the 
“Cross-validation” section of the supplementary 
online material.

For prediction of circadian phase, only data 
from the ambulatory part were used. For determin-
ing the predicted ambulatory phase, another 
BSBCF curve was fitted to the output of the predic-
tion model ŷ(t), and the respective predicted ambu-
latory circadian phase was determined again 
according to the COG method (see “Calculation of 
circadian phase” section in the supplementary 
online material) and compared to the reference 
phase determined by the COG method from the 
BSBCF curve of CR melatonin.

Final Model Structure

The inclusion of variables in the model was based 
on the accuracy of prediction of circadian phase in a 
cross-validation setting. Additionally, different lags 
for predictor variables were iteratively tried, and the 
best lags were identified, also based on the accuracy 
of prediction. For details, see the “Cross-validation” 
and “Variable selection” sections in the supplemen-
tary online material.

The variables that were selected with their respec-
tive lags are listed below:
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1. skin temperatures (6 variables for feet, hands, 
shoulders, thorax, upper legs, and lower legs) with 
lags of up to 5 h; we used the same lags for all skin 
temperatures;

2. motion with lags of up to 24 h; and
3. irradiance for ambient light in the blue spectral band 

with lags of up to 24 h.

Thus, 8 variables were selected (6 skin tempera-
tures, motion, and blue light). With their respective 
lags, the structure of the resulting prediction models 

based on the cross-validation results was 
as follows:

ŷ(t) = ahands,0Thands(t) + ahands,1Thands(t - 0.5) + … 
 + ahands,10Thands(t - 5) + afeet,0Tfeet(t) 
 + afeet,1Tfeet(t - 0.5) + … + afeet,10Tfeet(t - 5)
 + athorax,0Tthorax(t) + athorax,1Tthorax(t - 0.5)
 + … + athorax,10Tthorax(t - 5)
 + ashoulders,0Tshoulders(t) + ashoulders,1Tshoulders(t - 0.5)
 + … + ashoulders,10Tshoulders(t - 5)
 + aupper legs,0Tupper legs(t) 
 + aupper legs,1Tupper legs(t - 0.5) + …
 + aupper legs,10Tupper legs(t - 5)
 + alower legs,0Tlower legs(t) 
 + alower legs,1Tlower legs(t - 0.5) + …
 + alower legs,10Tlower legs(t - 5)
 + amotion,0M(t) + amotion,1M(t - 0.5)
 + … + amotion,48M(t - 24)
 + alight,0L(t) + alight,1L(t - 0.5) + …
 + alight,48L(t - 24) + b,

where Thands, Tfeet, Tthorax, Tshoulders, Tupperlegs, 
and Tlowerlegs were the respective skin tem-
peratures, M was the integrated variable 
for motion, and L was blue light. All data 
were down-sampled to 30-min bins, and 
all lags were given in hours with a step 
of ∆t = 0.5 h. The models contained 165 
parameters each: 164 coefficients ahands,0, 
K, alight,48 for the predictor variables with 
their respective lags plus the bias term b. 
CBT was intentionally not included in 
the prediction variable set because the 
goal of the validation study is to develop 
a device that imposes minimal subject 
burden.

Comparison of Prediction of 
Ambulatory Circadian Phase with 
Different Methods

For comparison, we also computed 
predictions of ambulatory circadian 
phase using 3 other variables that are 

most often used as ambulatory circadian markers: 
CBT, motion, and sleep midpoint. For CBT and 
motion, circadian phase was determined by the 
minimum of a waveform with a period of 24 h that 
was computed from ambulatory recordings using 
harmonic regression. For both CBT and motion, 1, 2, 
and 3 harmonics were tried, and the best results (low-
est standard deviation of prediction errors of CR 
melatonin phase) were with 1 harmonic for CBT and 
2 harmonics for motion. Sleep midpoint was com-
puted using the respective entries for “Lights-On” 

Figure 3. Modeling approach: (A) identification of a prediction model with 
ambulatory and CR data, and (B) validation of a prediction model with ambulatory 
data and CR melatonin for comparison of the predicted phase with the reference 
phase. The final structure of the regression model included only skin tempera-
tures, motion acceleration, and irradiance for blue light as the input variables with 
their respective lags.
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and “Lights-Off” in the electronic diary during the 
ambulatory part of the experiment. In order to see if 
the proposed prediction model provides a statistically 
significant improvement over the single predictors, 
we performed the Pitman-Morgan test of differences 
in variance (Mudholkar et al., 2003) of predictions by 
different methods.

RESULTS

In our study, we collected a representative dataset 
of a range of chronotypes. This is shown in Figure 4 as 
a distribution of circadian phases of study partici-
pants as determined by CR melatonin midpoint using 
the BSBCF and COG techniques. Data for CR melato-
nin, blue light exposure, CBT, motion, and shoulders 
and feet skin temperatures for the subjects with the 
earliest and the latest phase of entrainment as deter-
mined by CR melatonin are shown in Figure 5. Table 
1 provides information on the quality of recordings 
from our monitoring devices as percentage of time 
with acceptable data.

Predictions of the circadian rhythm for the 2 sub-
jects with the earliest and the latest phase of entrain-
ment as determined by CR melatonin phase are 
shown in Figure 6. The prediction of the ambulatory 
circadian rhythm is available for 6 days starting on 
the second day of the ambulatory part of the study 
because of the lag of the maximum lag 24 h in the 
prediction model. Figure 6 also shows the reference 
circadian rhythm in the form of a BSBCF curve for 
CR melatonin extrapolated onto the ambulatory part 
and scaled to [0, 1] and the BSBCF curve extracted 
from the prediction. Phases of these BSBCF curves 
determined using the COG method determine the 

reference phase from CR melatonin and the predicted 
ambulatory circadian phase.

Table 2 depicts the results of comparisons between 
the developed prediction models and conventional 
approaches using CBT, sleep log, and motion, as well 
as the chronotype of participants as midsleep on free 
days corrected for sleep deficit (MSFsc) (Roenneberg 
et al., 2007) determined during screening prior to 
participation in the study. Additionally, mean wake-
up times during the ambulatory part of the study 
with respective standard deviations are shown to 
give an idea of the variability in sleep timing of study 
participants with different chronotypes.

As it can be seen from Table 2, the regression mod-
els with multiple predictors provided the most accu-
rate prediction of circadian phase of CR melatonin. 
The prediction based on multiple regression had the 
lowest mean prediction error, lowest standard devia-
tion of error, highest correlation to CR melatonin 
phase, and smallest error range. The prediction error 
was determined as the reference phase by CR mela-
tonin minus the predicted phase by the respective 
method.

We compared the improvement of standard devia-
tion of predicted circadian phase by the multiple 
regression approach over CBT, sleep midpoint deter-
mined from the sleep log, and motion acceleration 
using the Pitman-Morgan test at a = 0.05/3≈0.016 
with the conservative Bonferroni correction (Curran-
everett, 2000). The improvement over CBT (standard 
deviation of error of 41 min v. 49 min) was not sig-
nificant (p = 0.486), although the use of multiple 
regression techniques resulted in a 40% smaller range 
of prediction errors (125 min v. 174 min). At the same 
time, significant improvements were achieved over 
sleep midpoint (p = 0.013) and motion acceleration 
(p = 0.005). This is particularly noteworthy because 
the CBT variable was not used for constructing the 
prediction model.

Scatter plots demonstrating the relationship of 
ambulatory circadian phase predicted by the differ-
ent methods versus the reference phase computed 
from laboratory melatonin are shown in Figure 7. It 
can be easily seen that the best prediction is provided 
by the regression models (upper left plot in Fig. 7): 
the points in this plot lie closest to the identity line, 
representing the ideal prediction of zero error.

We also computed correlations with circadian phases 
by CR melatonin for chronotype defined as midsleep 
corrected for sleep deficit (MSFsc) (Roenneberg et al., 
2007) determined during screening and mean wake-up 
times from the sleep logs. The correlations were 0.555 

Figure 4. Distribution of circadian phase by melatonin mid-
point of study participants.
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(p = 2.56 × 10–2) for 
MCTQ and 0.806 
(p = 1.63 × 10–4) for 
mean wake-up 
time; that is, both 
correlated at a sig-
nificant level with 
CR melatonin 
phase. The corre-
lation of the mean 
wake-up time 
with CR melato-
nin phase was 
a p p ro x i m a t e l y 
equal to that of 
sleep midpoint 
(r = 0.798), while 
using mean wake-
up time for predict-
ing the circadian 
phase resulted in 
an error range of 
267 min versus 
261 min for sleep 
midpoint as indi-
cated in Table 2 
(SD = 65 min for 
sleep midpoint 
and mean wake-
up time). At the 
same time, the 
range of predic-
tion errors for cir-
cadian phase with 
MSFsc was 360 
min (SD = 81 min).

DISCUSSION

Our results 
indicate that reli-
able detection of 
circadian phase in 
real-life condi-
tions is feasible 
based on a multi-
ple regression 
model and data 
gathered from a 
m u l t i - c h a n n e l 

Figure 5. Salivary melatonin level under CR for 32 h (top) and ambulatory data for 7 days (blue light irradi-
ance, CBT, motion, shoulders and feet temperature): double plotted hourly mean ± SE for 2 individual sub-
jects with the earliest and the latest phase of entrainment.
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ambulatory monitoring system, even without includ-
ing the “classic” circadian CBT marker as a predictor. 
The predicted circadian phase compares very accu-
rately to that of salivary melatonin secretion obtained 
in the laboratory under CR conditions. The variables 
that were included in the prediction models were 
obtained under real-life conditions from noninvasive 
small devices, which imposed little subject burden, 
and compared to the same variables measured under 
CR laboratory conditions. Possible reasons for inclu-
sion of the particular variables in the model are dis-
cussed below.

Skin temperatures exhibit periodic patterns through-
out the day that are related to circadian rhythms but 
also to thermoregulation and are affected by many 
masking factors. It is known, for example, that the so-
called distal-proximal temperature gradient (DPG) is 
a better indicator of the endogenous circadian rhythm 
than distal or proximal skin temperatures taken alone. 
DPG is less affected by masking occurring, for exam-
ple, due to thermoregulation (Kräuchi et al., 1999; 
Kräuchi, 2007). We did not simply use a linear combi-
nation of skin temperatures with fixed weights of 1 or 
–1, as is the case with DPG, but included 6 separate 
skin temperature variables computed from 11 multi-
ple locations in the prediction model with lags of up 
to 5 h. Thus, the model revealed individual weights of 
the separate skin temperature variables for best pre-
diction of the endogenous circadian rhythm.

Motion as measured with a portable accelerometer 
has been known to be an important marker of circa-
dian rest-activity rhythms for many years and became 
a standard technique for noninvasive measurements 
of chronotype-related rest-activity cycles as well as in 
patients with sleep-wake disturbances (Ancoli-Israel 
et al., 2003; Wirz-Justice, 2007). Conversely, locomotor 
activity can influence circadian rhythms (Mrosovsky, 
1996). Therefore, in our analysis, we included motion 

as a predictor in the regression model with lags cor-
responding to one complete 24-h period of activity. 
The motion variable helped in demasking the endog-
enous circadian rhythm from the skin temperatures.

Light is responsible for entraining the circadian 
clock to the external day. Therefore, it is very impor-
tant to measure daily light exposure in order to pre-
dict the day-to-day variations in circadian phase. 
Light in the blue part of the spectrum appears to be 
most important for entraining the circadian clock in 
humans (Lockley et al., 2003; Cajochen et al., 2005; 
Smith et al., 2009). In our regression model, we 
included irradiance measurements for ambient light 
corresponding to the blue spectral band with lags 
corresponding to one complete 24-h day-night cycle. 
It was also confirmed by cross-validation that blue 
light was a better predictor of circadian phase com-
pared to the other 4 spectral bands (infrared, red, 
green, and ultraviolet), the combinations of all or all 
the visible spectral bands. Blue light was also the only 
variable in our model that reflected season via the 
intensity of lighting and day length.

The result of skin temperatures, motion, and ambi-
ent light being the optimum predictors is also advan-
tageous for the following reasons: some variables 
such as heart rate and respiratory rate are heavily 
influenced by artifacts that are inevitable in multiple-
day recordings because of electrodes coming off (for 
eCG) or respiratory belts sliding down. This explains 
a lower percentage of acceptable data for heart rate 
and respiratory rate in Table 1 compared to data from 
motion, posture, ambient light, and skin temper-
atures. Besides that, wearing additional eCG elec-
trodes, respiratory belts, or a leg movement sensor is 
less comfortable than wearing only small skin tem-
perature sensors, an accelerometer on a soft belt at 
the waist, and spectacles or a headset with a light 
sensor. Additionally, respiratory belts require calibra-
tion, and the processing of respiratory channels as 
well as eCG requires more sophisticated algorithms 
with adjustable parameters for correct extraction of 
parameters such as heart rate and respiratory rate 
(Grossman et al., 2010). extraction of additional vari-
ables from eCG (e.g., heart rate variability) imposes 
yet higher requirements on data quality that can be 
hardly feasible for ambulatory measurements over 
multiple days.

In general, the developed regression model can be 
considered as a multivariate dynamic demasking 
technique because it is based not just on a single vari-
able like CBT or DPG, taken at a single time point for 

Table 1.  Percentage of time with acceptable data for all moni-
toring devices with respect to the entire time of the 
protocol averaged for all subjects.

ClockWatcher & Varioport Time with Acceptable Data (%)

Heart rate 92.5
Respiratory rate 93.4
Rectal temperature 89.1
Motion, posture 96.3
iButtons
Skin temperatures 99.1
LightWatcher
Ambient light 95.7
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determining the current value of the underlying cir-
cadian rhythm, but rather on a combination of mul-
tiple variables on a moving window. The model 
extracts the circadian variation from multiple skin 
temperature variables “filtering out” the masking 
influences by taking into account the rest-activity 
cycles, as given by the motion variable, and the 
most important factor of entrainment, as given by 
blue light. The improved accuracy of prediction of 
the entrained circadian phase compared to CBT, 
actimetry, DPG, or sleep logs, even without includ-
ing CBT as a predictor, can be explained by the use 
of the multiple regression approach using carefully 
selected multiple predictor variables with respec-
tive lags and CR melatonin as the target variable, in 
combination with advanced curve-fitting techniques 
(Van Someren and Nagtegaal, 2007), even though 
the prediction model for melatonin rhythm is linear 
in structure.

At the beginning of our modeling, we first tried a 
different and more straightforward approach that 
was to try and build a model for prediction of mela-
tonin levels in the CR using the measured data (tem-
peratures, motion, light, etc.) from the ambulatory 
week with lags of 0 to 7 days without any backward 
extrapolation of the melatonin-based reference circa-
dian rhythm. However, we failed to obtain any rea-
sonable prediction that would be better than simpler 

methods such as actimetry 
or sleep logs. A possible 
reason for that was the over-
fitting effect because the 
number of data points for 
CR melatonin is small. As a 
result, we developed a dif-
ferent approach presented 
in this article in which the 
target variable used for 
modeling is the melatonin 
secretion profile extrapo-
lated on to the ambulatory 
week, under the assump-
tion that the timing of sleep 
and daily activities does 
not change considerably 
throughout the ambulatory 
part and that prior light his-
tory affects melatonin secre-
tion in the CR (Wehr, 1998; 
Hébert et al., 2002; Smith 
et al., 2004).

The proposed approach 
needs to be further validated with a larger number of 
test subjects of different chronotypes and ages, also 
including female participants. The best results can be 
expected for late and extremely late chronotypes that 
are subject to “social jet lag” due to the discrepancy 
between their entrained circadian phase and the 
phase of their rest-activity cycles as dictated by work 
or study hours, indicating the putative clinical appli-
cations in circadian sleep disorders. For persons 
whose daily schedule corresponds well to their own 
chronotypes, simpler methods such as actimetry or 
sleep logs would provide sufficient accuracy of 
determination of circadian phase. Therefore, in order 
to reveal the advantages of our method, we would 
need a dataset with a larger proportion of late chro-
notypes than is usually encountered in the general 
population.

Additionally, the next step would be to investigate 
the dependence of accuracy of prediction of circadian 
phase on the number of days for ambulatory mea-
surements as well as on the number of skin tempera-
ture sensors. Another interesting direction of research 
would be the use of nonlinear modeling techniques, 
for example, artificial neural networks (Haykin, 
1999), which might better approximate the relation 
between the input variables and the reference circa-
dian rhythms. Thus, a yet smaller range of prediction 
error might be achieved.

Figure 6. Prediction of ambulatory circadian rhythm for the subjects with the earliest and the lat-
est phase of entrainment. [AQ: 1] represents the prediction for the ambulatory part of the study, 
thin solid line represents the extrapolated BSBCF curve of CR melatonin scaled to [0, 1], dashed 
thin line represents the BSBCF curve extracted from the prediction, dark bars correspond to sleep, 
and ticks on the x-axis correspond to midnights.
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In a practical application of our method 
for prediction of circadian phase, the equip-
ment would include only tiny skin tempera-
ture sensors (iButtons), a 3-dimensional 
accelerometer worn on a belt at the waist to 
minimize the influence of artifacts like, for 
example, hand movements for wrist-worn 
actimeters, and a light sensor for the blue 
spectral band. The accelerometer and the 
light sensor can be further miniaturized 
compared to the multi-channel versions that 
were used in our validation study because 
most of the channels in the multi-channel 
devices proved to be redundant, includ-
ing those that required high sampling rates 
(eCG and respiration) and most power 
consumption. The prediction model could 
be predefined in advance such that the 
regression coefficients would be fixed and 
no CR measurements, not even melatonin 
assays, would be required. This noninvasive 
measuring equipment and the proposed  
prediction method hold promise in sleep 
medicine or psychiatric illness or other 
clinical domains where knowing the exact 
endogenous circadian phase is important 

Table 2. Comparison of accuracy of different methods for prediction of ambulatory circadian phase versus CR melatonin phase.

Subject 
No.

MSFsca 
(h:min)

End Date 
(d.mo.y)

Ambulatory 
Mean Wake-up 
Time (h) ± SD 

(min)
CR Melatonin 
Phase (h:min)

Prediction Error (min) 
(Error = CR melatonin phase - Predicted phase)

Regression 
Modelsb CBT Sleep Midpoint Motion

 1 4:53 13.07.08 0817 ± 125 3:54 45 -66 -14 60
 2 3:32 27.07.08 0800 ± 31 3:31 17 -38 -8 -14
 3 5:30 17.08.08 0815 ± 25 3:51 -19 -117 -49 -100
 4 5:47 31.08.08 0833 ± 44 5:43 69 -122 65 43
 5 4:27 16.11.08 0745 ± 20 3:56 27 -97 2 -6
 6 7:15 18.01.09 0941 ± 71 5:55 5 -51 -6 15
 7 6:18 01.03.09 0954 ± 98 8:29 (latest) 56 -27 132 34
 8 5:53 29.03.09 0818 ± 49 4:57 82 -73 17 34
 9 4:02 26.04.09 0728 ± 30 3:00 -1 -49 -21 -33
10 3:51 12.06.09 0631 ± 36 1:46 (earliest) -31 -176 -71 -71
11 4:48 12.07.09 0830 ± 54 2:37 -43 -201 -129 -188
12 6:32 23.08.09 0811 ± 69 2:47 -40 -127 -127 -147
13 4:11 13.09.09 0615 ± 35 1:56 -15 -49 -66 -80
14 5:00 27.09.09 0802 ± 100 4:06 21 -94 -19 5
15 4:13 11.10.09 0736 ± 69 2:35 63 -106 -43 -73
16 7:32 08.11.09 0908 ± 20 3:44 -40 -125 -80 -72

Mean ± SD (min) 12 ± 41 -94 ± 49 -26 ± 65 -37 ± 61
Error range (min) 125 (-43 to 82) 174 (-201 to -27) 261 (-129 to 132) 248 (-188 to 60)

Correlation of 
predicted phase 

with CR 
melatonin phase

0.915 
p = 6.86 × 10-7

0.875 
p = 9.12 × 10-6

0.798 
p = 2.12 × 10-4

0.717 
p = 1.79 × 10-3

a. Midsleep on free days corrected for sleep deficit, determined during screening using the MCTQ questionnaire prior to study.
b. 16-fold cross-validation.

Figure 7. Prediction of ambulatory circadian phase for 16 subjects by 4 differ-
ent methods versus the circadian phase by melatonin in the laboratory under 
CR. Thick solid line represents the identity line of ideal prediction with zero 
error, dashed line is the best fit line, and dotted lines are errors ±1 h.
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for accurate treatment timing, for example, with 
light or melatonin, and where more invasive mea-
surements and/or undergoing laboratory investiga-
tion are not possible.
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