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Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory
measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this,
we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of
constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body
temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian
phase was within an error of 12 ± 41 min (mean ± SD) in comparison to melatonin phase during a CR protocol. The
physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral
band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on
artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional
data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore
multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a
large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures,
cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity
of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR
protocol in the laboratory for measuring unmasked circadian phase (i.e., “midpoint” of the nighttime melatonin
rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory
measurements, neural network–based nonlinear regression techniques were applied in combination with the cross-
validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian
phase with a prediction error of −3 ± 23 min (mean ± SD) was achieved using only two types of the measured
variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous
linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy,
nevertheless, improved. Neural network regression showed statistically significant improvement of variance of
prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion
acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have
identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and
clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method,
here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian
sleep-wake disorders. (Author correspondence: vitaliy.kolodyazhniy@sbg.ac.at)
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INTRODUCTION

The growing understanding of the function of circadian
rhythms in human physiology and pathology has also
led to emphasis on the important role of the external

day-night cycle to daily synchronize internal with
external time. Entrainment of endogenous circadian
rhythms to the 24-h solar day (for a review see Roenne-
berg et al., 2003) is clearly evident in the daily rhythms
of molecular, endocrinological, physiological, and
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psychological measures. These range from gene
expression, core body temperature (CBT), heart rate,
secretion of the pineal hormone melatonin and cortisol,
to sleep timing, mood, as well as higher cognitive func-
tions (for a review see Schmidt et al., 2007). Variables
such as CBT, melatonin, and cortisol rhythms have
been widely used to estimate parameters of the circadian
system, such as phase, amplitude, and endogenous
period, under controlled laboratory conditions
(Klerman et al., 2002). However, in daily life situations
such estimation is complicated by “masking” (Hiddinga
et al., 1997; Minors & Waterhouse, 1989) induced by
sleep, physical activity, meals, emotional activation,
light, etc., all of which have different modifying effects
on physiological variables (Wilhelm & Grossman, 2010;
Wilhelm et al., 2006), and are also time-of-day depen-
dent. The circadian profile of melatonin secretion is con-
sidered to be the most accurate circadian marker with
least variability compared to CBT and cortisol (Klerman
et al., 2002). Widespread use of this assay is jeopardized
by the need for carefully controlled lighting conditions
and the expense of multiple samples. CBT is more
susceptible to masking effects than melatonin or cortisol
and is measured via rectal probes, increasing
subject burden.

Many researchers have discussed the complexity of
estimating the relationship between measured data and
endogenous circadian phase (Carrier & Monk, 1997;
Eastman, 1992; Klerman et al., 1999; Minors & Water-
house, 1989; Wever, 1979). They used only a limited
number of physiological variables with demasking tech-
niques that was univariate or based on relatively simple
heuristics (e.g., subtracting or adding a value to CBT
derived from the subject’s activity) (Klerman et al., 1999).

One approach towards accurate estimation of
endogenous circadian phase using ambulatory data
would require multiple physiological and behavioral par-
ameters as well as measurement of ambient light as the
“zeitgeber” that contributes most to the entrainment of
the human circadian clock. The relation between ambu-
latory measurements with their masking components
and endogenous phase measured in the laboratory
under constant routine (CR) conditions could be estab-
lished using a “gold standard” circadian marker such as
melatonin. A representative data set would identify
which ambulatory variables provide most accurate esti-
mation of endogenous circadian phase using statistical
techniques. A prediction model would then allow esti-
mation of circadian phase in real-life conditions using
the minimal number of noninvasive variables, and no
longer require laboratory validation.

In the European Union (EU) Framework Programme 6
integrated project EUCLOCK (2006–2011; www.euclock.
eu), we developed an ambulatory multichannel circadian
physiology monitoring system (www.phi-i.com) and a
portable light sensor device (www.object-tracker.com)
that was used to gather data from a group of 16 subjects
with a broad range of chronotypes (Kolodyazhniy et al.,

2011b). Subject-independent multiple regression
models combined with curve-fitting procedures (Van
Someren & Nagtegaal, 2007) and the center of gravity
method (Wetterberg, 1998) allowed a rather precise pre-
diction of circadian phase under ambulatory real-life
conditions compared to the circadian phase of melatonin
secretion in the gold standard CR protocol (Kolodyazhniy
et al., 2011b).

However, the linear prediction models (Kolodyazhniy
et al., 2011b), although simple and transparent, are too
restrictive for estimating the complex relation between
the endogenous circadian rhythm and ambulatory
measurements of physiological, behavioral, and environ-
mental variables, because the underlying relation
between circadian rhythm and measured predictor vari-
ables can be substantially nonlinear. In the present work,
we propose nonlinearmodels for predicting the circadian
rhythm, as determined from melatonin secretion profile
during CR, based on artificial neural networks (ANNs;
Haykin, 1999) in combination with curve fitting and the
center of gravity technique for phase detection (Kolo-
dyazhniy et al., 2011b). ANNs are widely used for
pattern recognition problems, such as regression and
data classification (Bishop, 2006), and also for physiologi-
cal data (Kolodyazhniy et al., 2007, 2011a), including
applications related to sleep, fatigue, and alertness
(Kiymik et al., 2004; Reifman, 2004; Vuckovic et al.,
2002). To the best of our knowledge, the problem of
detecting circadian phase from ambulatory physiological
measurements based onmultiple regressionmodeling as
first addressed in our previous paper (Kolodyazhniy
et al., 2011b) has not yet been solved using the ANN
approach. In the present paper, we describe improved
(nonlinear) subject-independent prediction models as
well as significantly improved precision of estimation of
endogenous circadian phase from ambulatory data. We
attained our goal of reducing the number of measured
variables to a minimal, noninvasive set that is practicable
in a clinical or research setting.

MATERIALS AND METHODS

Protocol
The protocol was the same as described in (Kolodyazhniy
et al., 2011b), but is here summarized briefly. Figure 1
illustrates the overall design of the ambulatory circadian
monitoring validation study using a CBT data set. The
protocol involved an ambulatory part of ∼7 d under
real-life conditions. In the subsequent laboratory part,
an 8-h adaptation night of sleep at habitual bedtime
was followed by 32 h of sustained wakefulness (CR).

Ambulatory measurements always began on a Friday
between 11:00 and 17:00 h. During the 7-d ambulatory
episode, subjects kept their usual bedtime regimen,
which was registered by actimetry and sleep logs. In
addition, they kept a daily log about their subjective
well-being, sleepiness, etc., and electrocardiography
(ECG), rectal temperature, and respiration were recorded
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continuously with a wearable multichannel ambulatory
monitoring device, and skin temperatures with miniature
autonomous loggers. Ambient light was recorded by a
miniature light sensor attached to the side of eyeglasses
(either subjects’ own or zero-dioptric with a normal
frame provided by the investigators).

All ambulatory recordings continued in the laboratory
part of the study that started on the following Friday
between 19:00 and 21:00 h, and ended on Sunday
between 15:00 and 18:00. Individual timing of the adap-
tation night (8 h) and of the following CR (32 h) was
scheduled according to the sleep midpoint during the
ambulatory week, as determined from sleep logs.
Posture, ambient light (≤8 lux), and temperature levels
were kept constant; food and water was distributed uni-
formly across the CR protocol in order to minimize
masking effects and to enable us to quantify phase and
amplitude of the circadian markers, as detailed in Cajo-
chen et al. (2001).

The primary circadian marker was melatonin assayed
in saliva samples collected every 60 min throughout the
CR. CBT was continuously recorded throughout the
entire 9-d protocol, and these data were used for an
additional comparison of predictions of circadian phase
provided by the proposed model, as were sleep logs
acquired via electronic diaries.

The study protocol was approved by the local ethical
committee (Ethikkommission beider, Basel), conformed
to the Declaration of Helsinki, and met the ethical stan-
dards of the Journal (Portaluppi et al., 2010).

Subjects
Thirty male study volunteers of different chronotypes
(assessed as midsleep on free days corrected for sleep
deficit [MSFsc] using the Munich chronotype question-
naire [Roenneberg et al., 2007]) were included in the
study. Only healthy nonsmoking men 19 to 35 yrs old,
who lived on a normally entrained 24-h schedule and
had no self-reported sleep problems, were selected. For
practical reasons related to additional masking by the
menstrual cycle, only men were studied. Participants
signed a written informed consent form before being
enrolled, and underwent a medical examination at the

University Psychiatric Clinics (UPK) Basel prior
to participation.

Data collection was started in July 2008. Our previous
publication (Kolodyazhniy et al., 2011b) utilized data
from 16 subjects collected until November 2009. Data
from additional nine subjects were collected and the
validation study finished in October 2010. The total
number of participants included in the present analyses
was N = 25, and the overall success rate in our demanding
protocol was 83% (25 out of 30 participants, taking into
account five subjects for whom data collection was not
complete; see Kolodyazhniy et al., 2011b).

Ambulatory Monitoring Devices
Two ambulatory circadian physiology monitoring devices
were used, “ClockWatcher” (Phi-I, Amsterdam) and
Varioport (Becker Meditec, Karlsruhe) (see Figure 2 in
Kolodyazhniy et al., 2011b). CBT, ECG, respiration, body
movement, and posture were measured continuously
throughout the protocol. For details of the ambulatory
monitoring devices, our circadian software, and data
organization, see Supplementary Material.

A specialized miniature ambulatory monitoring
device “LightWatcher” (www.object-tracker.com) was
also developed to record light in five spectral bands
(infrared, red, green, blue, ultraviolet [UV]), three-
dimensional (3D) acceleration, and ambient temperature
(Figure 2 in Kolodyazhniy et al., 2011b). Elevenminiature
wireless temperature sensors (Thermochron iButtons;
Maxim, San Jose, CA, USA) were used to continuously
record skin temperatures on hands and feet (distal) and
upper and lower legs, shoulders, and thorax (proximal)
throughout the protocol (Figure 2 in Kolodyazhniy
et al., 2011b) as detailed in Supplementary Material.

An electronic diary was used for sleep logs and a
number of other scales (see Supplementary Material).
The procedures of checking and transferring the
recorded data to a database for further analysis are
explained in Supplementary Material.

Reference Circadian Phase
As previously reported (Kolodyazhniy et al., 2011b), the
reference circadian phase for model development was
based on the circadian rhythm of melatonin secretion

FIGURE 1. Overall protocol design and typical CBT measurements for one representative study volunteer: dark bars correspond to bed-
times; ticks on x-axis correspond to midnight and midday. In-laboratory part of the study protocol started on a Friday evening, scheduled
according to the subject’s usual bedtimes.
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during the 32-h CR protocol. Melatonin was used as a
reference for the following reasons: it is known to be
the most reliable circadian marker when measured
under dim light conditions, also compared to CBT
(Klerman et al., 2002). Reliable measurements of melato-
nin secretion were available for all 25 subjects throughout
the CR, whereas the CBT measurements for 4 subjects
contained artifacts. For one subject, the CBT measure-
ments in the laboratory were not available for more
than half of the CR due to a technical problem.

First, the reference waveform of melatonin secretion
was determined based on melatonin levels from a total
of 33 saliva samples taken every 60 min under CR con-
ditions. This waveform was assumed to have a period
of 24 h (i.e., entrained circadian period), and was ident-
ified by a bimodal skewed baseline cosine function
(BSBCF; Van Someren & Nagtegaal, 2007). For details,

see “Waveform Analysis” in Supplementary Material.
For regression modeling, the BSBCF waveform of CR
melatonin rhythm was extrapolated backwards on to
the preceding days of the ambulatory part and normal-
ized on to [0, 1] as in Kolodyazhniy et al. (2011b). The
extrapolatedmelatonin waveformwas used as the depen-
dent variable and ambulatorymeasurements as indepen-
dent variables for fitting prediction models of the
circadian rhythm (linear regression and neural networks;
see Figure 2A and description below).

The reference circadian phase was determined as the
time corresponding to the center of gravity (COG) of the
area (Wetterberg, 1998) under the periodic BSBCF curve
for one period of 24 h (Kolodyazhniy et al., 2011b; see
also “Calculation of Circadian Phase” in Supplementary
Material). With the COG method, there is no need for
thresholds to be defined for determining circadian

FIGURE 2. Modeling approach with cross-validation: (A) identification of a prediction model with ambulatory and CR data from 24 sub-
jects (training); (B) validation of the prediction model with data from another subject who was not included in the training data set using
ambulatory data only, and CRmelatonin for comparison of predicted phasewith reference phase. BSBCF = bimodal skewed baseline cosine
function; COG = center of gravity method. The process is iterated 25 times such that the predictions are validated for each subject. Note: the
training algorithm (least squares regression for linear models and resilient propagation for neural networks) determines the parameters of
the predictionmodel via minimizing the sum of squared errors between the predictedmelatonin rhythm and the extrapolated BSBCF wave-
form; the best neural network models (MLP115) did not include the motion variable.
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phase from the BSBCF curve, because the threshold is
always equal to the baseline (mean level of melatonin
after secretion offset and before onset; see Figure S1),
in contrast to the original work (Van Someren & Nagte-
gaal, 2007).

Linear Multiple Regression Modeling
Estimation of ambulatory circadian phase in our previous
work (Kolodyazhniy et al., 2011b) was based on linear
multiple regression models for evaluation of circadian
rhythm of CRmelatonin from ambulatory measurements
and a combination of the BSBCF, COG, and waveform
extrapolation approaches mentioned above.

The best prediction of circadian rhythm was
achieved with multiple regression models, including
the skin temperatures (with lags from 0 to 5 h in
30-min steps), motion, and irradiance in the blue spec-
tral band (both with lags from 0 to 24 h in 30-min steps).
CBT was intentionally not included in the prediction
variable set, because the goal of this validation study
was to develop a device that imposes minimal subject
burden by not using rectal probes. The linear models
contained in total 164 predictor variables and 165
regression parameters counting all lags and the
bias term.

To ensure subject-independent validation of the
prediction models, we used the same cross-validation
approach (Hastie et al., 2001) as before (Kolodyazhniy
et al., 2011b). Briefly, we iteratively left one of the subjects
(1 through 25) out of the data set and used the data from
the other 24 subjects for identifying a prediction model
via least squares regression, whereas the remaining
subject was used for validation of the model. For deter-
mining the parameters of linear prediction models of
the melatonin rhythm, data including both the ambulat-
ory and laboratory parts from the 24 subjects were used
(see Figure 2A). During validation (Figure 2B), only
ambulatory data of the one remaining subject were
used, and another BSBCF curve was fitted to the pre-
dicted melatonin rhythm for that subject. The predicted
ambulatory phase was determined from this fitted
BSBCF curve using the COG method (see “Calculation
of Circadian Phase” in Supplementary Material) and
compared to the reference phase of the same subject.
Thus, information on the reference phase from CR mela-
tonin was used only for fitting the models and estimation
of performance of the subject-independent models
during validation, but not for prediction of ambulatory
circadian phase, itself. In the cross-validation loop, we
identified 25 subject-independent linear multiple
regression models, which can predict the melatonin
rhythm from ambulatory data of subjects not included
in the training data set without any information from
CR melatonin. Using the BSBCF and COG methods, we
derive the ambulatory circadian phase from the pre-
dicted melatonin rhythm. For more details, see the sec-
tions “Linear Prediction Models” and “Cross-validation”
in Supplementary Material.

Neural Network–Based Nonlinear Modeling
An artificial neural network (ANN) consists of a number
of elementary processing units called artificial neurons,
which work in parallel in a way inspired by the parallel
information processing in living brains. The desired
input-output mapping of an ANN is realized via the
so-called training algorithm based on input-output
examples (input patterns and desired responses) from a
representative training data set. In such a way, an ANN
learns to approximate the distribution of data in the train-
ing set and to generalize for unknown data outside of the
training set for an arbitrary unknown nonlinear function
(Cybenko, 1989; Hornik, 1991).

We employ the most widely used type of artificial
neural networks called “multilayer perceptron,” or MLP
(Haykin, 1999). Each artificial neuron in an MLP
resembles a logistic regression model (Hastie et al.,
2001), i.e., computes a weighted sum of its inputs plus
a bias term and applies the so-called sigmoid activation
function to the result to produce an output between 0
and 1 (for the popular logistic sigmoid activation func-
tion). Combining multiple neurons in layers and apply-
ing proper training algorithms, complex nonlinear
input-output mappings can be learned based on the pre-
sented training data without explicitly knowing the
underlying functional relation between the inputs and
the output. For further detailed information see Haykin
(1999) and Bishop (2006).

For our implementation of the MLP neural networks,
we used the scientific computation package MATLAB
R2011b (The MathWorks, Natick, MA, USA) with the
Neural Network Toolbox. We applied neural network
models with two different sets of input variables. The
first set was exactly the same as for the previously
described linear model, i.e., it included the same 164
variables (counting all lags). This model will be referred
to as “MLP164” in the text below. The second set of
input variables did not contain the motion variable,
and the total number of input variables of MLP models
was 115 (six skin temperature variables with lags from 0
to 5 h in .5-h steps plus the ambient blue light with lags
from 0 to 24 h in .5-h steps). We subsequently call this
model “MLP115” (see Figure 3 for a graphic represen-
tation of its structure).

The reason for exclusion of the motion variable was an
attempt to develop a more parsimonious model with
fewer parameters that might also lead to better prediction
accuracy. We argued that the motion variable might be
redundant in the nonlinear model and prevent improv-
ing accuracy, because the circadian information con-
tained in the “zeitgeber” signal representing blue light
and in the skin temperature rhythms might be sufficient
if it can be captured by the nonlinear ANN approach as
opposed to the previous linear technique.

Circadian phase was determined from the predicted
melatonin rhythm via the same combination of the
BSBCF and COG approaches as with the linear regression
models from Kolodyazhniy et al. (2011b) described
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above. The cross-validation setting with 25 subjects was
also the same (see “Linear Multiple Regression Model-
ing” above and “Cross-validation” in Supplementary
Material), i.e., both the ambulatory and laboratory data
from 24 subjects were used for determining the par-
ameters of subject-independent ANN prediction
models of the melatonin rhythm (Figure 2A), and only
the ambulatory data of the one remaining subject for
the prediction of melatonin rhythm and its circadian
phase during validation without using any data from
the laboratory for the prediction itself (Figure 2B).

Both the MLP164 and MLP115 models contained five
neurons in the hidden layer and one neuron in the output
layer, all with logistic sigmoid activation function, and
831 and 586 adjustable weights, respectively. The
weights were trained with the resilient propagation
training algorithm (function “trainrp”) of the MATLAB
Neural Network Toolbox for 100 “epochs.” The ratio of
number of data points in the training sets to the
number of adjustable weights was about 11:1 for
MLP164 and about 15:1 for MLP115, which was quite
reasonable in order to avoid undesired overfitting
effects. For both MLP115 and MLP164, the 25-fold
cross-validation procedures including the training of
the neural networks were repeated 100 times, each time
with a different random initialization of the MLP
weights. This is the standard method of estimating per-
formance of neural networks and selecting the best-
performing models (Bishop, 2006; Haykin, 1999). More
details are presented in the section “Neural Network–
Based Prediction Models” in Supplementary Material.

Note: In a practical application after identifying the
best random initial weights of the MLP model from the
best cross-validation run, the MLP prediction model
should be trained once again using these best initial
weights and the entire data set without iteratively splitting
it into training and validation sets. In this way, one
obtains a single prediction model instead of multiple
models from all iterations of cross-validation (one
single MLP instead of 25 different MLPs in our case).
This model can be further tested with another inde-
pendent data set collected from subjects with a represen-
tative range of chronotypes (e.g., 10–20 subjects),
including ambulatory data for prediction and CRmelato-
nin for comparison of the predicted and actual circadian
phases. At this stage, no training would be required.
Afterwards, the obtained model can be used for predic-
tion of ambulatory circadian phasewithout CRmelatonin
or retraining for any further subjects.

Comparison of Prediction of Ambulatory Circadian Phase
With Different Methods
For comparison, we also computed predictions of ambu-
latory circadian phase using the three variables most
often used as circadian markers: CBT, motion, and the
sleep midpoint (as in Kolodyazhniy et al., 2011b). For
CBT and motion, circadian phase was determined by
harmonic regression analyses of ambulatory recordings
as the minimum of a waveform with a period of 24 h.
For both CBT andmotion, one, two, and three harmonics
were applied, and the best results (lowest standard devi-
ation of prediction errors for CR melatonin phase) were

FIGURE 3. Best neural network prediction model for circadian rhythm of melatonin secretion: two-layer perceptron with five neurons in
the hidden layer and sigmoid activation functions in both layers; dots (•) represent the adjustable weights of the neural network; circles with
“ + ” are summation units; large square blocks are logistic sigmoid activation functions σ(x) = 1/(1+ exp(−x)); small square blocks rep-
resent input lags with time step of Δt = .5 h; ones (“1”) stand for constant bias inputs. The input variables (115 in total) include six skin
temperatures (Thands,Tfeet,Tthorax,Tshoulders,Tupper legs, and Tlower legs) with lags up to 5 h and light variable L of irradiance in the blue spectral
band with lags of up to 24 h.
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attained with the one harmonic regression for CBT and
two harmonics for motion. Sleep midpoint was com-
puted using the respective entries for “Lights On” and
“Lights Off” in the electronic diary during the ambulatory
part of the experiment.

In order to learn if the proposed prediction models
provided a statistically significant improvement over the
single predictors, we performed the Pitman-Morgan
test of differences in variance (Mudholkar et al., 2003)
of predictions by different methods. Compared to the
original test, we computed one-tailed statistics in order
to determine if the variance of prediction error of one
method is smaller than the variance of the other
method, rather than simply testing the inequality of the
two. One-sided Pitman-Morgan tests are a reasonable
way of testing the direction of difference in variance of
two samples (Chen et al., 1996), and thus model
fit improvement.

RESULTS

We studied a range of chronotypes, shown in Figure 4 as a
distribution of circadian phases of study participants as
determined by CR melatonin midpoint. Data for CR mel-
atonin, blue light exposure, CBT, motion acceleration,
and shoulder and foot skin temperatures for the subjects
with the earliest and the latest phase of entrainment as
determined by CR melatonin are shown in Figure 5.
The earliest and latest phases were 01:45 and 08:29 h,
respectively. Table 1 provides information on the
quality of recordings from our monitoring devices as per-
centage of time with acceptable data as used by our
prediction models.

In the analyses described in this paper, we used the
data set from our previous publication (Kolodyazhniy
et al., 2011b) as well as data from nine new study partici-
pants. Table 2 depicts the results of comparisons between
the best neural network–based prediction models
MLP115 and MLP164 (based on 100 cross-validation
runs with different random initializations each), the pre-
viously developed linear multiple regression approach,
and conventional approaches using CBT, sleep logs,

and motion. The screening information on individual
chronotype is presented as midsleep on free days cor-
rected for sleep deficit (MSFsc; see Roenneberg et al.,
2007). Additionally, mean bed- and wake-up times
during the ambulatory part of the study with respective
standard deviations are shown to give an idea of the
variability in sleep timing of study participants with
different chronotypes.

As can be seen from Table 2, the best prediction is
achieved by the MLP115 models. This result was ob-
tained in run 38 out of 100 cross-validation runs for this
model. For both MLP115 and MLP164, we used the
same sequence of the seed value of the random
number generator of 0 to 99 corresponding to the run
number minus one. The regression models MLP115 pro-
vided the most accurate prediction of circadian phase of
CR melatonin, with the lowest mean prediction error,
lowest standard deviation of error, highest correlation
to CR melatonin phase, and smallest error range. The
prediction error was determined as the reference phase
of CR melatonin minus the predicted phase by the
respective method. Interestingly, we found no associ-
ation of prediction error with gaps in the data, as the sub-
jects with the largest gaps (as given in the section
“Interpolation of Missing Data” in Supplementary
Material) were not those with the largest prediction
error (see Table 2). The minimum amount of data for ac-
curate predictions can be investigated separately, also for
different chronotypes and different variability in sleep
and activity timing.

For the linear prediction approach, we obtained a very
similar estimate of prediction error (11 ± 42 min, mean ±
SD) for the larger number of subjects (N = 25) as in our
previous publication (Kolodyazhniy et al., 2011b),
which was 12 ± 41 min for N = 16.

We compared the improvement of variance of the pre-
dicted circadian phase by the neural network approach
over the linear models, CBT, sleep midpoint determined
from the sleep logs, and motion acceleration using the
one-sided Pitman-Morgan with correction for multiple
comparisons according to the false discovery rate
method (Curran-Everett, 2000). Thus, systematic offsets
did not affect our comparison, although they are also
reported in Table 2 as mean prediction errors for all
methods. For the false discovery rate of fF = .05 and the
total of 803 comparisons (Table 3), 36% of all MLP115
models proved to have significantly lower variance of pre-
diction error over the linear models, 25% over CBT, 70%
over sleep midpoint, and 85% over motion acceleration.
The error variance of MLP164 models was significantly
smaller than that of the linear models in 17% cases, in
4% than of CBT, and in 93% cases than of sleep midpoint,
and in 97% than of motion acceleration. The linear
models, as previously (Kolodyazhniy et al., 2011b),
proved to be significantly better than sleep midpoint
and motion acceleration, but not CBT.

To estimate the improvement of MLP115 models over
MLP164, we computed the one-sided Pitman-Morgan

FIGURE 4. Distribution of individual circadian phase as assessed
by the melatonin midpoint during the CR protocol of each
study participant.
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test on the pooled prediction errors from 33 best cross-
validation runs of MLP115 and MLP164 ranked by the
standard deviation of prediction errors of the respective
run. The test result was highly significant with p < 10−8,
i.e., the MLP models with 115 predictors were signifi-
cantly better than all the other compared approaches.

In order to test if the accuracy of prediction can be
further improved by reducing the number of skin temp-
eratures, or if the number of skin temperature sensors
can be reduced without sacrificing prediction accuracy,

we tried iterative exclusion of each skin temperature vari-
able for both MLP115 and MLP164 models. In each case,
this led to increased standard deviation of prediction
error. Therefore, MLP models reported here contain the
same number of skin temperature variables as the
linear approach (Kolodyazhniy et al., 2011b). Similarly,
we tried to remove the light variable from the model,
but this resulted in dramatic increase of prediction
error. Thus, we have confirmed that our predictor vari-
ables were the optimal ones.

FIGURE 5. Salivarymelatonin levels during a 32-h CR protocol (top graph) alignedwith ambulatory data for 7 d (blue light irradiance, CBT,
motion, shoulder and foot temperatures): double-plotted 30-min means ± SEM for two individual subjects with the earliest and the latest
phase of entrainment. Gray bars represent average sleep times for the earliest and latest subject (top and bottom of ambulatory data plots,
respectively).
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Predictions of the normalized circadian rhythm of
melatonin for the two subjects with the earliest and the
latest phase of entrainment as determined by CR melato-
nin phase are shown in Figure 6 for the best prediction
model MLP115. Prediction of the ambulatory circadian
rhythm is available for 6 d starting on the second day of
the ambulatory part of the study, because of the
maximum lag of 24 h in the prediction model. Figure 6
also shows the reference circadian rhythm in form of a
BSBCF curve for CR melatonin extrapolated onto the
ambulatory part and scaled to [0, 1], and the BSBCF
curve extracted from the prediction. Phases of these
BSBCF curves determined using the COG method deter-
mine the reference phase from CR melatonin and the
predicted ambulatory circadian phase. Note that the
similarity of the predicted ambulatory circadian rhythm
and the extrapolated CR melatonin waveform.

Scatter plots demonstrating the ambulatory circadian
phase as predicted by the different methods versus the
reference phase computed from melatonin under CR
conditions are shown in Figure 7. It can be easily seen
the best prediction is provided by the neural network
models without the motion acceleration variable
(MLP115; upper left plot in Figure 7): the points in this
plot lie closest to the identity line representing the ideal
prediction of zero error.

DISCUSSION

Our new results indicate that reliable detection of circa-
dian phase in real-life conditions is feasible using only
two noninvasive measures—even without including the
“classical” circadian marker CBT or motion (the rest-
activity cycle) as a predictor (in the best model
MLP115). The validation study presented here is based
on multiple regression models (linear and nonlinear)
and data gathered from a multichannel ambulatory
monitoring system. The predicted circadian phase com-
pared very accurately to that of melatonin obtained in
the laboratory under CR conditions. Variables that were
included in the prediction models were obtained
during everyday life behavior from small devices, which
imposed little subject burden, and compared to the
same variables measured under CR laboratory con-
ditions. Possible reasons for the new results that

exclude motion, as in the original modeling approach
(Kolodyazhniy et al., 2011b), are discussed below.

Skin temperatures exhibit periodic patterns through-
out the day that are related to an underlying circadian
rhythm in thermoregulation but also to homeostatic ther-
moregulatory adjustments to changes in ambient and
body temperatures. They are affected by many masking
factors, so the distal-proximal temperature gradient
(DPG) is a better indicator of the endogenous circadian
rhythm than distal or proximal skin temperatures, per
se (Kräuchi, 2007; Kräuchi et al., 1999). We did not
simply use a linear combination of skin temperatures
with fixed weights of 1 or −1, as is the case for calculating
the DPG, but included six separate skin temperature vari-
ables in the predictionmodel with lags of up to 5 h. Thus,
the model revealed individual weights of the separate
skin temperature variables for best prediction of the
endogenous circadian rhythm. Furthermore, in the
neural network model, the six skin temperature variables
are combined in a nonlinear fashion, which would have
contributed to improving prediction accuracy.

Light is the major zeitgeber responsible for entraining
the circadian clock to the external day (Roenneberg et al.,
2003). Thus, it is crucial to measure daily light exposure
in order to predict the day-to-day variations in circadian
phase, as shown in a long-termmeasurement single case
study (Watanabe & Kripke, 1988). Not just light, per se,
but the spectral composition of light received provides
even more specific information to the circadian clock:
light in the bluewavelength appears to bemost important
for circadian entrainment (Cajochen et al., 2005; Lockley
et al., 2003; Smith et al., 2009). In our regression models,
we included irradiance measurements for ambient light
corresponding to the blue spectral band with lags corre-
sponding to one complete 24-h day-night cycle. It was
also confirmed by cross-validation in Kolodyazhniy
et al. (2011b) that blue light was a better predictor of cir-
cadian phase than the other four spectral bands (infra-
red, red, green, and ultraviolet), the combinations of all,
or all the visible spectral bands. Blue light was also the
only variable in our model that reflected season via the
intensity of lighting and day length, as in our previous
work (Kolodyazhniy et al., 2011b).

Motion was included in our initial prediction model
based on linear regression (Kolodyazhniy et al.,
2011b). Motion reflects the circadian rest-activity
rhythm and actimetry has become a standard technique
for noninvasive, 24-h, long-term measurements of rest-
activity cycles in health and illness (Ancoli-Israel, 2003;
Wirz-Justice, 2007). In our previous analysis (Kolo-
dyazhniy et al., 2011b), we included motion as a predic-
tor in the regression model with lags corresponding to
one complete 24-h period of activity. Besides that, we
assumed that inclusion of the motion variable helped
in demasking the endogenous circadian rhythm from
the skin temperatures by separating the influence of
rest-activity cycles if the latter were not in phase with
the endogenous rhythm, e.g., due to variability in

TABLE 1. Percentage of time with acceptable data for all
monitoring devices with respect to the entire time of the protocol
averaged for all analyzed subjects (N = 25)

Device % time with acceptable data

ClockWatcher and Varioport
Rectal temperature 89.7
Motion 97.6
iButtons
Skin temperatures 99.28
LightWatcher
Ambient light 95.1
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TABLE 2. Comparison of accuracy of different methods for prediction of ambulatory circadian phase versus CR melatonin phase

Subject
no.

End date,
dd.mm.yy

CR melatonin
phase, hh:mm

MSFsc,a hh:mm
(screening prior to

study)

Ambulatory mean
bedtime, hh:mm ± SD

(min)

Ambulatory mean wake-
up time, hh:mm± SD

(min)

Prediction error (min) error = CR melatonin phase − predicted phase

25-fold cross-validation

CBT
Sleep

midpoint Motion
MLP115,

best
MLP164,

best
Linear
models

1 13.07.08 3:52 4:53 23:57 ± 43 08:17 ± 126 −6 2 78 −38 −16 88
2 27.07.08 3:29 3:32 23:17 ± 46 08:00 ± 32 −28 8 33 −10 −10 14
3 17.08.08 3:54 5:30 00:58 ± 51 08:15 ± 25 −2 −31 −25 −82 −44 −65
4 31.08.08 5:43 5:47 00:43 ± 43 08:33 ± 45 41 20 87 −92 65 73
5 16.11.08 3:55 4:27 00:03 ± 78 07:45 ± 21 20 17 39 −68 1 23
6 18.01.09 5:58 7:15 02:20 ± 33 09:41 ± 72 −9 11 32 −18 −3 48
7 01.03.09 8:29 (latest) 6:18 02:38 ± 85 09:54 ± 98 36 43 80 3 132 64
8 29.03.09 4:55 5:53 01:02 ± 45 08:18 ± 49 15 32 66 −45 15 62
9 26.04.09 2:57 4:02 23:15 ± 23 07:28 ± 30 −5 21 −4 −23 −25 −7
10 12.06.09 1:45 (earliest) 3:51 23:23 ± 40 06:31 ± 36 −18 −20 −9 −147 −73 −42
11 12.07.09 2:28 4:48 01:01 ± 34 08:30 ± 55 4 −29 −46 −180 −138 −167
12 23.08.09 2:47 6:32 01:36 ± 94 08:11 ± 70 −18 −29 −34 −97 −127 −117
13 13.09.09 2:01 4:11 23:48 ± 65 06:15 ± 36 −39 −38 −18 −14 −61 −45
14 27.09.09 4:06 5:00 00:48 ± 45 08:02 ± 101 20 23 28 −64 −19 35
15 11.10.09 2:36 4:13 22:59 ± 26 07:36 ± 69 −16 −34 −12 −75 −42 −42
16 08.11.09 3:44 7:32 00:56 ± 46 09:08 ± 20 −39 −29 −27 −94 −79 −41
17 20.12.09 3:36 4:58 01:30 ± 29 08:19 ± 36 −28 −33 −23 −95 −79 −64
18 17.01.10 3:56 5:04 00:08 ± 68 09:07 ± 74 13 −19 −29 −99 −42 −52
19 21.02.10 3:06 2:35 23:27 ± 35 08:16 ± 66 12 −18 25 −77 −44 −11
20 14.03.10 2:49 4:56 00:28 ± 31 07:33 ± 41 19 2 −16 −68 −72 −18
21 11.04.10 5:08 6:13 02:31 ± 59 08:44 ± 106 17 54 63 −127 −30 111
22 30.05.10 2:26 7:02 23:56 ± 42 07:48 ± 83 −7 −29 28 −33 −86 −51
23 04.07.10 3:49 5:22 00:41 ± 71 09:36 ± 78 −50 −38 −60 −92 −80 −29
24 10.10.10 5:32 7:13 01:50 ± 25 10:13 ± 113 −6 34 32 −50 −29 −80
25 24.10.10 5:13 6:37 02:42 ± 33 08:46 ± 38 −10 −3 −7 −110 −32 −15
Prediction error, mean ± SD (min) −85 ± 83 192 ± 62 −265 ± 60 −3 ± 23 −3 ± 28 11 ± 42 −71 ± 44 −36 ± 56 −13 ± 65
Prediction error range (min) 407

(−277 to 130)
279

(71 to 350)
277

(−362 to −86)
91(−50 to

41)
92 (−38 to

54)
147

(−60 to 87)
183

(−180 to 3)
270 (−138
to 132)

278 (−167
to 111)

Correlation of predicted phase with CR
melatonin phase

.51
p < .01

.71
p < 10−4

.75
p < 10−4

.97
p < 10−14

.96
p < 10−13

.89
p < 10−8

.87
p < 10−8

.80
p < 10−5

.70
p < 10−3

aMidsleep on free days corrected for sleep deficit, determined during screening using the MCTQ questionnaire.
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bedtimes or late work hours. However, in the nonlinear
neural network model, which can more accurately
capture the complex dependencies of circadian
rhythms on ambient light exposure and better extract
the circadian component from skin temperatures, the
motion variable might be redundant. Indeed, removing
this variable with its lags of up to 24 h substantially sim-
plified the nonlinear prediction model by reducing the

number of adjustable weights by 42% (from 831 to
586), whereas at the same time accuracy was improved.
Nevertheless, measuring the motion variable does not
impose high subject burden, and it would make sense
measuring it in further applied studies for different
reasons. It can help estimate (without being a predictor
in the model) the discrepancy of the actual rest-activity
cycle (e.g., for night-shift workers or persons with

TABLE 3. Comparison of variance of prediction errors with one-sided Pitman-Morgan testa

Compared prediction
models

Number of pairwise comparisons
(total 803)

% p
< .05

% p
< .01

% p
< .001

% rejectedH0 corrected for false discovery
rate fF = .05

Model
A Model B

Linear CBT 1 0 0 0 0
Linear Sleep

midpoint
1 100 0 0 100

Linear Motion 1 100 100 100 100
MLP115 Linear 100 42 16 1 36
MLP115 CBT 100 39 6 0 25
MLP115 Sleep

midpoint
100 76 62 45 70

MLP115 Motion 100 93 75 58 85
MLP164 Linear 100 35 4 1 17
MLP164 CBT 100 9 0 0 4
MLP164 Sleep

midpoint
100 95 81 32 93

MLP164 Motion 100 97 96 85 97

aH0 : σ2A ≥ σ2B,H1 : σ2A < σ2B. The percentage of significant comparisons in the last column was computed for the total of 803 comparisons
using the false discovery rate procedure (Curran-Everett, 2000).

FIGURE 6. Prediction of ambulatory circadian rhythm of melatonin secretion for the subjects with the earliest and the latest phase of en-
trainment: thick solid line represents the prediction for the ambulatory part of the study, thin solid line represents the extrapolated BSBCF
curve of CR melatonin scaled to [0, 1], dashed thin line represents the BSBCF curve extracted from the prediction, dark bars correspond to
sleep, and ticks on the x-axis correspond to midnights.
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“social jet lag”) and their endogenous circadian rhythm
as estimated by the prediction model.

Our result showing skin temperatures and ambient
light are the optimum predictors is also advantageous
for the following reasons: some variables, such as heart
rate and respiratory rate, are heavily influenced by arti-
facts that are inevitable in multiple-day recordings
because of electrodes coming off (for ECG) or respiratory
belts sliding down. In addition, wearing ECG electrodes,
respiratory belts, or a leg movement sensor is less com-
fortable than wearing only small skin temperature
sensors and spectacles with a light sensor. Moreover, res-
piratory belts require calibration, and the processing of
respiratory channels as well as ECG requires more

sophisticated algorithms with adjustable parameters for
correct extraction of parameters, such as heart rate and
respiratory rate (Grossman et al., 2010). Extraction of
additional variables from ECG (e.g., heart rate variability)
imposes yet higher requirements on data quality, which
can be hardly feasible for ambulatory measurements
over multiple days.

In general, the developed regression model can be
considered as a nonlinear multivariate dynamic demask-
ing technique (in contrast to the original linear approach
of Kolodyazhniy et al., 2011b), because it is based not just
on a single variable such as CBT or DPG taken at a single
time point for determining the current value of the
underlying circadian rhythm, but rather on a nonlinear

FIGURE 7. Prediction of ambulatory circadian phase for 25 subjects by six differentmethods versus the circadian phase ofmelatonin in the
laboratory under CR. Thick solid line represents identity line of ideal prediction with zero error, the dashed line is the best fit, and the dotted
lines encompass errors ±1 h of the identity line.
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combination of multiple variables on a moving window
via neural network regression. Themodel extracts the cir-
cadian variation from multiple skin temperature vari-
ables, “filtering out” the masking influences by taking
into account an important factor determining entrain-
ment—exposure to blue light. This, combined with the
use of CR melatonin as the target variable and the ad-
vanced curve-fitting techniques (Van Someren & Nagte-
gaal, 2007) resulted in improved accuracy of prediction of
entrained circadian phase compared to CBT, actimetry,
DPG, or sleep logs.

As in Kolodyazhniy et al. (2011b), the approach pre-
sented in this paper is based on the assumption that
there is no large systematic drift in the timing of sleep
and daily activities throughout the ambulatory part, and
that prior light history affects melatonin secretion in the
CR (Hébert et al., 2002; Smith et al., 2004; Wehr, 1998).
Influence of prior light history on CR melatonin was
also confirmed by the importance of the blue light vari-
able in our modeling.

If the timing of sleep and activity is drifting (e.g., as in
rotating shiftwork), the phase of entrainment may not be
determined reliably, irrespective of the method. At the
same time, variations in sleep timing throughout ambu-
latory measurements without a large systematic drift
would not have considerable adverse effects on predic-
tion accuracy, if the circadian phase from the predicted
melatonin rhythm is determined over multiple days as
proposed using the BSBCF and COG approaches.
Indeed, in our study, some subjects did have a consider-
able variation of their sleep timing, but the largest predic-
tion errors were, nevertheless, not associated with the
largest standard deviation of bed or wake-up times as
can be seen from Table 2. For a better handling of the
drift in the timing of sleep and activities, the proposed
approach could be modified for weighting of the days
over which circadian phase is determined. In this case,
the first day would be weighted least and the last
day most.

The proposed approach still needs to be validated with
female participants and volunteers of different age
groups. As we noted previously (Kolodyazhniy et al.,
2011b), the best results can be expected for late and extre-
mely late chronotypes, who are subject to “social jet lag”
due to the discrepancy between their internal circadian
phase and the phase of their rest-activity cycles as dic-
tated by work or study hours, indicating the putative
clinical applications in circadian sleep disorders. One
further step would be to investigate modifications of the
prediction model that would possibly allow reduction
in the number of skin temperature sensors to minimize
the subject burden even further.

However, the neural network model developed here is
sufficient to estimate ambulatory circadian phase
(without laboratory measurements such as melatonin)
in a new data set, if the same devices for skin tempera-
tures and blue light were used during an ambulatory
period of ∼1 wk. In contrast, replication of our results,

including the construction of a new prediction model,
would require data from a representative group of sub-
jects (N = 15–30) with a range of chronotypes, using a
similar protocol for ∼1 wk of ambulatory measurements
(skin temperatures and blue light on both free and work-
days) followed by a >24-h constant routine (for a com-
plete circadian profile of melatonin secretion as well as
unmasked skin temperature data).

In conclusion, the practical equipment for ourmethod
to predict circadian phase would include only tiny skin
temperature sensors (iButtons) and a light sensor for
the blue spectral band. If required, a 3D accelerometer
could be used to record the control variable motion.
Although necessary for the validation study, most of the
channels in the multichannel devices proved to be re-
dundant. Thus, we attained our aim of finding the
minimum number of measures required for an ambulat-
ory device in the real world that, when combinedwith the
prediction model, provides a remarkably accurate esti-
mate of internal clock time. This noninvasive measuring
equipment and the proposed prediction method holds
promise in sleep medicine, psychiatry, or other clinical
domains where knowing the exact endogenous circadian
phase is important for accurate treatment timing, e.g.,
with light or melatonin, and where more invasive
measurements and/or laboratory investigation are not
possible. The improved nonlinear prediction models
with higher accuracy potentially broaden the application
area of our approach.
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SUPPLEMENTARY MATERIAL

The contents of this supplementary material are based on
the previous publication (Kolodyazhniy et al., 2011) with
changes concerning the neural network prediction
models and modifications of the curve fitting approach.
The section “Variable Selection” is excluded, as it is not
within the scope of the present publication. In other sec-
tions, only the variables relevant in the present analyses
are considered. Additionally, the description of the ambu-
latory monitoring devices from the previous publication
was moved to this supplement with minor updates. New
parts include detailed descriptions of prediction models.

Sleep Logs
The subjects were instructed to keep their predefined
bedtimes that they planned themselves and communi-
cated to the study supervisor several days before the
experiment. They were asked to fill out the sleep logs
carefully for each day of the ambulatory phase, taking
into account both their habitual wake times on weekends
and workdays and their concrete plans for the ambulat-
ory week. For the analysis presented in this paper, the
times of switching the lights off before sleep and the
wake-up times were used. Filling out the sleep log was
scheduled 10 min after the planned wake-up time for
each day. Subjects were notified to fill out the sleep log
by a beep tone from the electronic diary, repeating itself
every 5 min until the sleep log was filled out. Compliance
in filling out the electronic sleep log was checked by the
time stamps of the data entries, as well as by rest/activity
and light data. Subjects were informed of these compli-
ance checks and did not significantly deviate from their
self-planned bedtimes. The sleep diary was checked
before the constant routine (CR) study in the laboratory
and used for scheduling the CR according to the
average sleep midpoint during the ambulatory week.

Ambulatory Monitoring Devices
A prototype of the ambulatory circadian monitoring
device “ClockWatcher” for studies within the EUCLOCK
Project was developed by Personal Health Institute Inter-
national (Phi-I) in Amsterdam (see Figure 2 in Kolo-
dyazhniy et al., 2011). The ClockWatcher is designed to
record the following variables over multiple days:

. core body temperature (CBT;measured with a disposa-
ble rectal probe);

. electrocardiogram (ECG; recorded with solid gel elec-
trodes; each subject was given additional electrodes
and instructed to replace them daily);

. respiration (recorded with two belts for thorax and
abdomen);

. body movement and posture (measured with a three-
dimensional [3D] accelerometer);

. leg movement (measured with a 1D accelerometer);
and

. event markers (going to sleep/taking shower).

Additionally, an “off-the-shelf”monitoring device (Var-
ioport, BeckerMeditec, Karlsruhe, Germany)was acquired
in order to expedite the development of the ambulatory
circadian models (see Figure 2 in Kolodyazhniy et al.,
2011). The VarioPort device had custom-made signal
preamplifiers that allowed them to be used for recording
the same set of variables as with the ClockWatcher. Out
of the 30 participants, 8 wore the ClockWatcher (5 com-
plete data sets) and 22 the VarioPort (20 complete sets)
Based on feedback from this validation study, a new
miniaturized version of ClockWatcher with improved
reliability was developed by Phi-I (www.phi-i.com).

Using calibration and our MATLAB software (The
MathWorks, Natick, MA, USA), all data from both
devices were brought to the same ranges to facilitate
further model development irrespective of the device
type. For details of our circadian software and data organ-
ization, see the section “Circadian Software Toolbox and
Database” below.

For recording ambient light, a specialized miniature
ambulatory monitoring device “LightWatcher” was also
developed within the EUCLOCK Project by Sowoon (Lau-
sanne, Switzerland) (Figure 2). It has the following
measurement channels (Kolodyazhniy et al., 2011):

. light in five spectral bands (infrared, red, green, blue,
ultraviolet);

. 3D acceleration (motion along axes X, Y, and Z, used
for compliance check); and

. ambient temperature.

Eleven miniature wireless temperature sensors (DS
1922L Thermochron iButtons; diameter × height: 17 × 6
mm, accuracy .0625°C; Maxim, San Jose, CA, USA)
were used to record skin temperatures continuously in
2.5-min intervals throughout the protocol (Smith et al.,
2010). The iButtons were fixed to the skin with thin, air-
permeable adhesive surgical tape (Fixomull® Beiersdorf,
Hamburg, Germany) on the left and right side of the
body (hands, feet, except for thorax) (see Figure 2 in
Kolodyazhniy et al., 2011). The temperature sensors
can be worn under normal life conditions, including
taking a shower and doing sports. The iButtons were
applied by the experimenters at the beginning of the pro-
tocol and were worn throughout. Each subject was given
ca. 50 pieces of adhesive tape 50 × 50 mm in size and in-
structed to replace themwhen necessary, so the tempera-
ture sensors stayed in good contact with skin and at the
same locations. All sensors were numbered and the sub-
jects received a diagram showing the correct locations of
the sensors on skin according to the numbering, which
were checked again in the laboratory before the CR.

Handheld computers of type Palm Tungsten E (Palm
Inc., Sunnyvale, CA, USA) were used as an electronic
diary. Questionnaires for sleep logs and a number of
other scales and fill-in forms were programmed with
Pendragon Forms software v. 4.0 (Pendragon Software,
Buffalo Grove, IL, USA).
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Checking and Transferring Data
The clocks of all devices were synchronized at the begin-
ning of themeasurements with themaster personal com-
puter (PC) that was used for collecting and processing
data. Deviation of the clocks from the master clock after
completing the entire protocol for each subject did not
exceed ±3 min.

For the ClockWatcher and VarioPort devices, batteries
needed to be replaced in the middle of the ambulatory
part (3 or 4 d after the start) and at its end. Replacement
of batteries was done by the study supervisor. At the same
time, data were downloaded for inspection and backup,
although the memory cards had enough capacity to
store data for the entire protocol (about 1 GB). At the
same time, data from the light sensor were checked.
The entire procedure including battery replacement
took ∼20 min. Data were transferred and inspected
using a portable computer in the presence of the test
subject. Import of data from all devices, including the
skin temperature sensors, into the database for analysis
was done after the end of the entire protocol for
each subject.

Circadian Software Toolbox and Database
For multiple regression modeling based on data from
multiple multichannel ambulatory monitoring devices,
it is essential that the data from heterogeneous sources
are synchronized and properly preprocessed. For
storing the preprocessed data, a database running on
MySQL Server v.5.5.9 (Oracle Corp, Redwood City, CA,
USA) was created. Import of study data into the database,
preparation of the data for analysis, and analysis, includ-
ing the linear and neural network–based regressionmod-
eling approaches, were done using a specially developed
circadian software toolbox running under the general-
purpose numerical computing environment MATLAB
R2011b (The MathWorks). Fitting of bimodal skewed
baseline cosine function (BSBCF) curves for melatonin
and predictions of the circadian rhythm required the
use of the MATLAB Optimization Toolbox (see also the
section “Waveform Analysis”). For the new analyses
with neural network models, functions of the MATLAB
Neural Network Toolbox were used.

Recordings from “slow” data sources with sampling
periods of ≥1 min were imported into the database
without any preprocessing (iButtons, LightWatcher,
E-diary, melatonin levels). Data from the ClockWatcher
and VarioPort devices with sampling rates up to 512 Hz
were preprocessed prior to importing them into the data-
base. In the preprocessing step, sampling periods for all
channels were reduced to 30 s after some transformation
of the recorded signals, primarily the following: heart rate
and respiratory rate were derived from the respective raw
signals (VarioPort recordings already contained a heart
rate channel) and accelerations along axes X, Y, and Z
were divided into the respective motion and posture
components, and leg movement was computed from
the respective 1D accelerometer. In the present

publication, only melatonin, CBT, motion, skin variables,
blue light, and sleep log data are analyzed. Therefore,
only these variables are described in this and the
following section.

A direct double-antibody radioimmunoassay (RIA)
was used for the melatonin assay, validated by gas
chromatography–mass spectroscopy (Bühlmann Labora-
tories, Schönenbuch, Switzerland). The minimum
detectable dose of melatonin (analytical sensitivity) was
determined to be .2 pg/mL. The functional least-detect-
able dose using the less than 20% coefficient of interassay
variation criterion was <.65 pg/mL (Weber et al., 1997).

For obtaining the motion variable, the low-frequency
components Xpost, Ypost, and Zpost corresponding to
posture were computed from the respective acceleration
channels Xacc, Yacc, and Zacc using a second-order IIR
filter with a 3 dB cutoff at .15 Hz. The high frequency
components corresponding to motion were then ex-
tracted via rectifying the difference of the acceleration
and posture:

Xmov = abs(Xacc − Xpost)/2,Ymov

= abs(Yacc − Ypost)/2,Zmov = abs(Zacc − Zpost)/2.

An integrated variable for motion was also computed as
square root of sum of squared values of motion along
the respective coordinates: M = �����������������������

X2
mov + Y 2

mov + Z2
mov

√
.

Via downsampling of the original high sampling rate
to the sampling period of 30 s, the overall amount of
data was dramatically reduced from more than 1 GB
per subject to less than 10 MB. At the same time, the
sampling period of 30 s allowed us to visually detect
CBT probe slips as a fast decline in temperature and
edit them using the graphical user interface of our soft-
ware. The software uses real time and date for all data
records in the database, such that all time stamps from
multiple heterogeneous data sources (including multi-
channel physiological recordings, electronic diaries,
and melatonin assays) are synchronized. Data imported
into the database are retrieved by the software and re-
sampled “on the fly” to an arbitrarily common sampling
period that can be chosen from 30 s to 6 h, independent
of the original sampling rate of the raw data or the prepro-
cessed data in the database. This provides a convenient
means for multivariate modeling and visualization.

Data Preparation for Regression Modeling
The following steps of data preparation were performed
with the data previously imported into the database to
form the data set for multiple regression modeling with
the linear and neural network-based approaches:

1. Skin temperatures. For skin temperatures measured
with iButtons, six variables were produced from the
11 sensors: averaging of the left- and right-hand side
sensors (except for thorax) resulted in skin tempera-
ture variables for shoulders, hands, feet, thorax,
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upper legs, and lower legs. Temperature data were
detrended by subtracting from each temperature
channel its moving average with a window of 24 h.
The moving average was computed by averaging the
data in the interval of ±12 h from the current point
(i.e., from the center of the moving window), so that
no phase distortion was introduced. Detrended data
were z-transformed for each participant. In the
z-transformed data, all values outside the range of
[−2, 2], i.e., ±2 standard deviations, were discarded
as outliers, and the gaps were interpolated using
cubic polynomials. For details on interpolation, also
for other measured variables mentioned in items
3 and 4 below, see the section “Interpolation of
Missing Data.”

2. Ambient light. Irradiance values <.01 were replaced
with .01, and the variable was log10-transformed to
accommodate the very broad range of irradiance
between darkness and bright sunlight.

3. Motion. Only the integrated variable for motion along
axes X, Y, and Z was used. Missing values were interp-
olated using cubic polynomials.

4. CBT. This variable was edited for probe slips. Missing
values were interpolated using cubic polynomials.
Probe slips were determined as a decline in the
temperature within several minutes below the CBT
minimum of the entire recording.

5. Melatonin. A periodic BSBCF waveform was extracted
from the CR-derived melatonin rhythm for each
subject and extrapolated backwards onto the 7 d of
the ambulatory part preceding the in-laboratory
experiment. Then, after scaling to the range of [0, 1]
and adding normally distributed random noise with
a standard deviation of .01, this variable was used as
the target for fitting a multiple regression model
(linear or neural network based), with input variables
from the multichannel recordings of both the ambu-
latory and laboratory parts of the experiment that
were 9 d long for each subject. The scaling of the
BSBCF waveform was performed in order to eliminate
individual differences in levels of melatonin secretion
that complicate the development of a subject-inde-
pendent circadian rhythm model, and the random
noise improved model identification.

To model a realistic situation of real-world appli-
cation, no recordings that were used in the analysis
were manually edited, i.e., data that were included in
the analysis were automatically processed raw data. The
only editing was of the CBT recordings, which were
used for comparison of the prediction of circadian
phase with the linear and nonlinear regression models
and were used neither as a predictor nor as the depen-
dent variable in the models themselves.

All channels for each subject were aligned based on
the respective time stamps, and the data were further
resampled to 30-min bins. To avoid phase distortion in
resampling, the time stamp of all bins on the time axis

corresponded to the center of the bin. From each
subject, data from both the ambulatory and laboratory
parts were used for fitting a prediction model using the
least squaresmethod for the linearmodels or the resilient
propagation training algorithm (“trainrp”) of the
MATLAB Neural Network Toolbox for the neural
network models.

Interpolation of Missing Data
For interpolation of missing points in data from the
monitoring devices, piecewise cubic Hermite interpolat-
ing polynomials were used (MATLAB function “interp1”
with method “cubic”). The polynomials use three data
points on each side of the gap to fit the interpolating
curve. In our software, we set the threshold for the
maximum length of interpolated gaps to 12 h.

In the entire data set there were three large gaps in
ambulatory data caused by technical problems in the
multichannel measurement devices: ca. 48 h for subject
1 (CBT, motion), ca. 30 h for subject 8 (ambient light),
and ca. 80 h for subject 17 (ambient light). We did
not exclude these participants, because our threshold
for the usability of collected data was the presence of at
least 50% of ambulatory recordings in all channels.
For the other four subjects who were excluded at the
initial stage of our study due to technical problems as
described in (Kolodyazhniy et al., 2011), this criterion
did not hold. The technical problems were subsequently
solved by the respective manufacturers in newer versions
of the devices. Most of the other gaps were only
several minutes long and occurred when the subjects
took shower or during replacement of the batteries
and memory cards in the ClockWatcher and
VarioPort devices.

Waveform Analysis
The bimodal skewed baseline cosine function (BSBCF;
Van Someren & Nagtegaal, 2007) is defined as follows:

f (t) = b+ H

2(1− c) (cos(t − φ+ n cos(t − φ))

+m cos(2t − 2φ− π) − c + | cos(t − φ

+ n cos(t − φ)) +m cos(2t − 2φ− π) − c|),

where t is time (in radians, 2π = 24 h), b is the baseline,H
is the peak level (>0), c is the peak width (≥–1 and <1), φ is
phase (in radians, 0 to 2π), n is skewness (between ≥–.5
and ≤.5), and m is bimodality (≥0 and <1). Fitting of the
BSBCF curve was done using the MATLAB optimization
toolbox using data with a sampling period of 30 min.
The fitted data were either melatonin data or the pre-
dicted circadian rhythm from the regression models.
Hourly melatonin data were resampled to match the
timestamps of other data channels first by upsampling
to 1-min sampling rate using linear interpolation and
then by downsampling to 30-min bins. An example of
the curve fitting is shown in Figure S1. The minimized
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objective function in the optimization procedure in
MATLAB was

J(Y , Ŷ ) = 1− R2(Y , Ŷ ),

where Y is the data to be fitted (melatonin data or the pre-
dicted melatonin rhythm), Ŷ is a vector of values of the
fitted BSBCF function f(t) for time t from the start to
the end of the fitted data with a step of 1 min, and R2 is
the coefficient of determination. For more stable
results, we slightly modified our original approach (Kolo-
dyazhniy et al., 2011) by “folding” the data to be fitted via
computing 1-min averages for time from 00:00 to 23:59 h
for the entire length of the data and fitting the BSBCF
function to the folded data.

Calculation of Circadian Phase
Circadian phase was determined as the time of day corre-
sponding to the center of gravity (COG) of the area (Wet-
terberg, 1998) under the periodic BSBCF curve for one
period of 24 h (Kolodyazhniy et al., 2011):

COG =

∑tstart+24

t=tstart
t · ( f (t) − b)

∑tstart+24

t=tstart
( f (t) − b)

,

where t is time in hours, b is the baseline found from
fitting the BSBCF function, and tstart is the time point
when the 24-h period starts (Figure S1).The start of the
24-h period (tstart) was found as the first time point
where the BSBCF curve differed from the baseline. For
precise computing of circadian phase, the fitted BSBCF
curve was resampled with a sampling period of 1 min.
The combination of the BSBCF and COG approaches
can be interpreted as average circadian phase for each
subject, i.e., for 32 h of the reference melatonin data
(1.33 d with two offsets and one onset) or for the 6-d-
long prediction of the circadian rhythm from themultiple
regression model (linear or neural network). With the
COG method, there is no explicit threshold parameter
for determining circadian phase from the BSBCF curve,
because the “threshold” is always equal to the baseline

b. Van Someren and Nagtegaal (2007) defined the
phase of the BSBCF curve as midpoint at threshold
level of 25%. This threshold may need to be adjusted
if there is a narrow peak or two peaks very different in
amplitude, with one of them below 25%.

Linear Prediction Models
Linear multiple regressionmodels for estimation of circa-
dian rhythm of CR melatonin from ambulatory measure-
ments were described by the following equation
(Kolodyazhniy et al., 2011):

ŷ(t) = αhands,0Thands(t) + αhands,1Thands(t − 0.5)
+ . . .+ αhands,10Thands(t − 5) + αfeet,0Tfeet(t)
+ αfeet,1Tfeet(t − 0.5) + . . .+ αfeet,10Tfeet(t − 5)
+ αthorax,0Tthorax(t) + αthorax,1Tthorax(t − 0.5) + . . .

+ αthorax,10Tthorax(t − 5) + αshoulders,0Tshoulders(t)
+ αshoulders,1Tshoulders(t − 0.5) + . . .

+ αshoulders,10Tshoulders(t − 5) + αupper legs,0Tupper legs(t)
+ αupper legs,1Tupper legs(t − 0.5) + . . .

+ αupper legs,10Tupper legs(t − 5) + αlower legs,0Tlower legs(t)
+ αlower legs,1Tlower legs(t − 0.5) + . . .

+ αlower legs,10Tlower legs(t − 5) + αmotion,0M(t)
+ αmotion,1M(t − 0.5) + . . .+ αmotion,48M(t − 24)
+ αlight,0L(t) + αlight,1L(t − 0.5) + . . .+ αlight,48L(t − 24)
+ β,

where ŷ(t) is the predicted value of normalizedmelatonin
level at time t, Thands,Tfeet,Tthorax,Tshoulders,Tupper legs, and
Tlower legs were the respective skin temperatures, M was
the integrated variable for motion, L was blue light. All
data were downsampled to 30-min bins. The models
contained 165 parameters each: 164 coefficients
αhands,0, . . . , αlight,48 for the predictor variables with their
respective lags plus the bias term β. The first index of
the coefficients alpha means sensor type or location,
whereas the second one designates the lag of the respect-
ive input variable in 30-min steps from 0 (no lag) through
48 (a lag of 24 h). The parameters αhands,0, . . . , αlight,48 and
β were determined using linear least squares regression.

FIGURE S1. Determining circadian phase from CR melatonin using bimodal skewed baseline cosine function (BSBCF) and center of
gravity (COG) of area under BSBCF curve for one period (shaded area in the plot): tstart is the first time point where the BSBCF curve
differs from the baseline, andmarks the beginning of the interval for computing the COG; the baseline is found from fitting the BSBCF curve.
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Neural Network–Based Prediction Models
The artificial neural network (ANN) model with the same
predictor variables as the linear model above (MLP164) is
described as

ŷ(t) = fMLP164{Thands(t),Thands(t − 0.5), . . . ,Thands(t − 5),
Tfeet(t),Tfeet(t − 0.5), . . . ,Tfeet(t − 5),
Tthorax(t),Tthorax(t − 0.5), . . . ,Tthorax(t − 5),
Tshoulders(t),Tshoulders(t − 0.5), . . . ,Tshoulders(t − 5),
Tupper legs(t),Tupper legs(t − 0.5), . . . ,Tupper legs(t − 5),
Tlower legs(t),Tlower legs(t − 0.5), . . . ,Tlower legs(t − 5),
M(t),M(t − 0.5), . . . ,M(t − 24),
L(t), L(t − 0.5), . . . , L(t − 24)}.

Here, fMLP164 is the nonlinear function “learned” by the
MLP neural network with 164 inputs based on the
same training data as the linear model in (Kolodyazhniy
et al., 2011). The meaning of the variables is the same as
for the linear model described above.

The ANN model without the motion variable
(MLP115) is represented by the following equation:

ŷ(t) = fMLP115{Thands(t),Thands(t − 0.5), . . . ,Thands(t − 5),
Tfeet(t),Tfeet(t − 0.5), . . . ,Tfeet(t − 5),
Tthorax(t),Tthorax(t − 0.5), . . . ,Tthorax(t − 5),
Tshoulders(t),Tshoulders(t − 0.5), . . . ,Tshoulders(t − 5),
Tupper legs(t),Tupper legs(t − 0.5), . . . ,Tupper legs(t − 5),
Tlower legs(t),Tlower legs(t − 0.5), . . . ,Tlower legs(t − 5),
L(t), L(t − 0.5), . . . , L(t − 24)}.

Here, fMLP115 is the nonlinear function of the MLP
network with 115 inputs.

The weights of the hidden layer represent the influence
of each variable (e.g., Thands) for each specific lag on each
neuron of the hidden layer. In turn, the weights of the
output layer represent the influence of the hidden layer
neurons on the output of the ANN, i.e., on the resulting
prediction. Both layers are fully connected, i.e., all inputs
are connected via weights to all neurons of the hidden
layer, and all outputs of the hidden layer are connected
to the output layer neuron. The number of weights in
the hidden layer equals the number of inputs plus one
for bias weights times the number of hidden layer
neurons (five for both MLP164 and MLP115), and in the
output layer the number of hidden neurons (one for
both MLP164 and MLP115) plus one. This gives in total
(164 + 1) × 5 + (5 + 1) = 831 weights for MLP164 and (115
+ 1) × 5 + (5 + 1) = 586 weights for MLP115. The weights
were trained with the resilient propagation training algor-
ithm (function “trainrp”) for 100 epochs.

Cross-validation
Prediction of circadian phase of melatonin secretion with
multiple regression models (linear and neural networks)
was based on the subject-independent cross-validation

approach, where data from 24 subjects out of 25 were
used for identifying a model, and data from another
subject was used for validation. In the first iteration, sub-
jects N2–N25 were used for model identification, and
subject N1 for validation; in the second iteration subjects
N1, N3–N25 for model identification, and subject N2 for
validation, and so on (see Figure S2). Thus, in each of the
iterations, one model was identified using data from all
but one subject and validated with the data from that
subject “unseen” during model identification, i.e., there
were 25 fits with 24 subjects each validated against an
unknown subject. The approach to subject-independent
cross-validation was similar to that widely accepted in
the literature (e.g., Ho et al., 2009; Howard et al., 2009;
Zhao & Lu, 2005).

For model identification, data with both ambulatory
and laboratory parts was used, whereas validation was
done only with ambulatory data of the respective subject
in order to provide a realistic estimate of circadian phase
in real-life conditions. Special care was taken to ensure
no data from the CR and the adaptation night were in-
cluded into the data set for validation, also taking into
account the detrending method for skin temperatures
described above. Thus, the predictions of the ambulatory
circadian phase started 24 h after the protocol start due to
the maximum lag of 24 h in the prediction model, and
ended 12 h before the adaptation night in the laboratory
due to the detrending method for skin temperatures.

In each iteration of cross-validation, data were restan-
dardized to simulate a real situation where unknown
observations with unknown means and standard devi-
ations arrive and are used for prediction of circadian
phase based on statistical characteristics of the known
data that were used for fitting the regression model.
Data standardization in each of cross-validation iter-
ations was done as follows: first, means and standard
deviations were computed for the respective variables
in the entire data set used for fitting the model compris-
ing data from 24 subjects. Then, these means and

FIGURE S2. Data split for 25-fold cross-validation with 25 sub-
jects: for subject number i (i = 1, …, 25), complete ambulatory
and CR data from the other 24 subjects are used for identification
of the ith prediction model, and the ith subject’s own ambulatory
data and CR melatonin are used for validation of the ith model.
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standard deviations were used to perform z-transform-
ation of both the data used for fitting the model (24 sub-
jects) and of the validation data from another subject. For
artificial neural networks, the 25-fold cross-validation
procedure, including training of a neural network, was
repeated 100 times, each time using a different initializa-
tion of the random number generator.
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