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be quantified by spectral EEG correlates in the low-frequency 
range (1-7 Hz) during sleep and wakefulness.13-19 The intensi-
ty of low-frequency EEG activity at the beginning of sleep is 
proportional to the duration of prior wakefulness, and is con-
sidered to reflect the homeostatic aspect of sleep regulation.20-22 
During sustained wakefulness, EEG activity in the 1-7 Hz range 
increases and can predict the subsequent homeostatic increase 
in slow wave activity (SWA, EEG power density 0.75-4.5 Hz) 
during sleep,16,23,24 a phenomenon that is particularly pronounced 
in frontal brain regions.23,24 This increased propensity in frontal 
low-frequency EEG activity (FLA) during sustained wakeful-
ness suggests that frontal regions are more susceptible to sleep 
deprivation effects than other cortical regions.23,25

The process S deficiency hypothesis for MDD has rarely 
been tested in either sleep or waking EEG. An early study found 
lower delta waves during sleep in depressed patients,10 which 
was later documented only in males with MDD.9 In untreated 
middle-aged depressives, there was no difference from controls 
in SWA during sleep.26 Similarly, EEG studies during wakeful-
ness in depression are contradictory and inconclusive.27

It is surprising that this has not received more attention, since 
waking EEG-derived indices are a desirable biological measure 
in psychiatric disorders, given its practicability, low budget, 
and possibility of a greater number of recording sites.27 Thus, 
here we aimed at investigating sleep-homeostat and circadian-
related differences in the EEG during extended wakefulness 
in MDD and healthy women under very stringently controlled 
laboratory conditions.

INTRODUCTION
Major depressive disorder (MDD) is often associated with 

a dysregulation in circadian rhythmicity and/or sleep regula-
tion. Abnormal circadian rhythms in many variables have been 
reported over the years, ranging from core body temperature, 
neurotransmitters, and hormones to physiology of the sleep-
wake cycle itself.1,2 Characteristics of the circadian system 
(amplitude, phase, and/or endogenous period) can be measured 
under very stringent laboratory conditions using markers such 
as core body temperature or melatonin. Although both delayed 
and advanced phases have been found in patients with MDD, 
several studies using highly controlled protocols such as the 
constant routine3,4 or forced desynchrony5,6 could not confirm 
circadian phase changes in MDD. However, reduced circadian 
amplitude seems to be generally present.2,4,7,8

The process S deficiency hypothesis postulates a deficiency 
in the homeostatic build-up of sleep pressure during wakeful-
ness in MDD, leading to a shallower dissipation rate of process 
S during sleep.4,9-12 Changes in homeostatic sleep regulation can 
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the other half participated in a low sleep pressure protocol (to 
be reported elsewhere).

The control sample comprised 8 healthy young women (age 
range: 20-31 years; mean age 25 ± 3.3 years, without any sleep 
problems [mean PSQI 2 ± 1.63 SD]).34,35 All study volunteers 
underwent a physical examination as well as an interview about 
sleep quality, life habits, and health state. They were free of 
any medication intake or treatment (except oral contraceptives) 
for ≥ 2 months; they had no neurological or sleep disorders. 
Sleep efficiency did not differ in the 2 groups (P = 0.54) mea-
sured by wrist actigraphy (mean value for MDD 88.67 ± 4.3 
SD; for healthy 92.41 ± 4.0 SD). Volunteers were included only 
if their clinical sleep EEG scoring had no pathological findings 
(apnea-hypopnea index [AHI] < 10/h; periodic leg movements 
[PLM] index < 10/h). To exclude chronotype-specific differ-
ences in circadian phase preference we selected only moderate 
chronotypes (morning-evening-type [M/E] questionnaire rating 
between 14 and 21 points).36 Thus, chronotype was not signifi-
cantly different between the 2 groups (controls 15.6 ± 3.6 vs. 
depressive 16.1 ± 1.3), nor was the body mass index (BMI, 21.2 
± 2.5 for the depressive and 20.9 ± 1.4 for the healthy volun-
teers). All participants were nonsmokers and without any drug 
abuse, as verified by urinary toxicological analysis sensitive for 
amphetamines, benzodiazepines, opiates, and tetrahydrocan-
nabinol (Drug-Screen Card Multi-6, von Minden GmbH, Mo-
ers, Germany). Participants were also required to abstain from 
excessive caffeine and alcohol consumption and heavy physical 
exercise. They indicated ≤ 3 cups of caffeinated beverages per 
day and ≤ 10 glasses of alcohol per week. Other exclusion cri-
teria were: shift work within 3 months and transmeridian flights 
within 1 month prior to the study. All women (from both of 
the depressed and healthy controls) started the study on days 
1–5 after menses onset in order to complete the entire study 
block within the follicular phase. Three women with MDD 
and 5 control women used oral contraceptives. Thus, our study 
group included 8 young women with MDD and 8 healthy con-
trols. While this sample seems rather low, the study was carried 
out under very controlled laboratory conditions of a constant 
routine (CR). In addition, prior to the study, participants were 
required to adhere to a regular sleep-wake cycle as verified by 
actigraphy and sleep logs, and all spent an adaption night in the 
laboratory. Thus, the procedure significantly reduced variability 
in the output measures.

All procedures conformed to the Declaration of Helsinki. The 
local ethics committee approved the study protocol, screening 
questionnaires and consent form,37,38 and all study participants 
gave signed informed consent.

Study Design
Each participant was instructed to maintain a regular sleep-

wake cycle (bed- and wake-times within 30 min of self-selected 
target time), verified by wrist activity monitors (Cambridge Neu-
rotechnology, UK) and sleep logs for one week prior to the “in 
laboratory” part of the study. The entire study design entailed 2 
protocols, one for high sleep pressure conditions and one for low 
sleep pressure conditions, with 8 controls and 8 depressive vol-
unteers in each protocol. Participants were assigned randomly 
to either the low or high sleep pressure protocol. The treatment 
order (“sleep deprivation” vs. “nap protocol”) was counterbal-

Our main hypotheses were as follows:
1. Women with MDD undergo a deregulation of 

sleep-wake homeostasis in comparison to healthy 
women, as indexed by an altered time course in 
EEG power density in the 1-5 Hz range during 40 
h of extended wakefulness, particularly in frontal 
derivations, which are more susceptible to the effects 
of prolonged wakefulness.

2. Based on these alterations in sleep-wake homeostasis, 
which can affect subjective parameters, women with 
MDD experience higher subjective sleepiness and 
tension levels during 40 h extended wakefulness.

3. Women with MDD show attenuated amplitude and/
or circadian phase advance or delay in the rhythm of 
melatonin secretion.

METHODS

Study Participants
All study participants were recruited via advertisements at 

different Swiss universities and on online job advertisement 
pages for students. A total of 900 candidates were enrolled as 
potential participants, and all completed a general question-
naire on their health status, medication, and shift work, as 
well as a Beck Depression Inventory (BDI),  Pittsburgh Sleep 
Quality Index (PSQI), and Chronotype questionnaires. Of 
these candidates, 80 young women were interviewed (SCID-
I), and 25 volunteers were selected for study participation. Of 
these 25, 16 young women (mean age 24 ± 4.8y [SD]) par-
ticipated in the study. Most of the potential participants were 
excluded since they had evening chronotype or high PSQI 
(> 8). All women were experiencing an episode of a MDD 
when undertaking the study protocol and fulfilled the diag-
nostic criteria of MDD according to the DSM-IV-TR. The 
main reason to include only women was based on the greater 
prevalence rate of MDD (without comorbidity), in women 
than men.

Since all of our depressed women were rather young, they 
did not have a long history of depression. The depressed partici-
pants experienced either the first or the second onset episode; 
none of them had been given psychiatric (including psychotro-
pic drugs) treatment before the study. The episode duration was 
≥ 2 weeks, according to DSM-IV-TR criteria (prior mean dura-
tion 11.18 ± 7.6 months). They had no atypical symptoms, did 
not experience severe sleep problems, as measured by the PSQI 
(PSQI ≤ 8; mean PSQI 6.5 ± 1.6),28 and did not exhibit any 
comorbid psychiatric DSM-IV-TR-disorder. Each participant 
underwent a clinical interview, which was performed by the 
same clinical psychologist (ABP). This interview comprised 
the structured clinical interview for DSM-IV Axis I Diagnoses 
of existing symptoms (SCID-I; mean: 5.15 ± 0.37 SD),29 the 
Hamilton-17 scale, the structured interview guide for the Ham-
ilton depression rating scale with atypical depression supple-
ment (SIGH-ADS; mean for HAMD-17: 12.29 ± 2.49 SD),30,31 
the Montgomery-Åsberg Depression Scale (MADRS; mean: 
16.71 ± 2.13 SD),32 and the Beck Depression Inventory (BDI; 
mean value 21.29 ± 6.84 SD).33 Half of the 16 MDD women 
were allocated to a high sleep pressure protocol (i.e., 40 h of 
extended wakefulness under constant routine conditions), while 
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The functional least-detectable dose using the less than 20% 
coefficient of interassay variation criterion was < 0.65 pg/mL, 
and individual serum and saliva melatonin profiles showed ex-
cellent parallelism (r = 0.977-0.999; slopes = 0.21-0.63).44

Statistics
For all analyses, the statistical packages SAS (SAS Institute 

Inc., Cary, NC, USA; Version 6.12) and Statistica (Stat-Soft 
Inc., 2000-2004, Statistica for Windows, Tulsa, OK, USA) were 
used. Repeated measure analyses of variance (rANOVAs) were 
performed with the between factor “group” (depressive vs. con-
trol). We also considered the within factor “derivation” (EEG 
channels: F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, O2) and 
the within factor “time-of-day” (11 time points; the 3.75-h inter-
val came about 150 min of wakefulness followed by 75 min of 
the corresponding scheduled sleep (nap). This duration allows 
starting the recovery night at the same clock time [circadian 
phase] as the baseline night, since it replaced the last scheduled 
nap). These 3 factors (“group,” derivation,” and “time-of-day”) 
were performed for each 0.5-Hz frequency bin separately in the 
range of 1-20 Hz. Since we did not observe consistent left-right 
changes in MDD women vs. control women, frontal (F3, Fz, 
F4), central (C3, Cz, C4), parietal (P3, Pz, P4), and occipital 
derivations (O1, Oz, O2) were collapsed per subject into a single 
frontal derivation (average [F3, Fz, F4]), a single central (aver-
age [C3, Cz, C4]), a single parietal (average [P3, Pz, P4]), and 
a single occipital derivation (average [O1, Oz, O2]). Frequency 
bins yielding significance for the interaction “group × deriva-
tion” were collapsed into frequency bands, averaged per 3.75-h 
bin per study volunteer, and subjected to rANOVA with the fac-
tors “group,” “derivation,” and “time-of-day.” Similarly, the 30-
min subjective ratings and melatonin values were collapsed into 
3.75-h time bins resulting in 11 time points and subjected to rA-
NOVAs with the factors mentioned above. All P-values derived 
from rANOVAs were based on Huynh-Feldt’s (H-F) corrected 
degrees of freedom (significance level: P < 0.05). Alpha adjust-
ment for multiple comparisons was applied according to Cur-
ran-Everett.45 Pearson correlation coefficients were computed to 
compare individual FLA levels with depressions scores derived 
from the MADRS and Hamilton 7-Item scale in MDD women.

RESULTS

EEG during Wakefulness
Absolute spectral EEG power density for each frequency bin, 

for each derivation, and for each derivation averaged over eleven 
3.75-h time intervals yielded a significant “group” effect for the 
frequency bins between 1 and 2.5 Hz, a significant “derivation” 
effect for a broader frequency range 1-13 Hz, (F3,42 ≥ 3.3) and 
14.2-20 Hz (F3,42 ≥ 4.7), and a significant interaction “group” × 
“derivation” effect between 0.5 and 4 Hz (F3,42 ≥ 2.9; P < 0.05; 
Figure 1). Similarly, when considering averaged derivations 
(frontal, central, parietal, occipital), a significant “group” effect 
was elicited between 0.5 and 2 Hz (F1,14 ≥ 4.6), and a significant  
(i.e., P < 0.05) “derivation” effect was elicited between 1-8 Hz 
(F3,42 ≥ 5.8), 9.5-12 Hz (F3,42 ≥ 6.4), and 16.5-20 Hz (F3,42 ≥ 4.0). 
Furthermore, the interaction term “group” × “derivation” yielded 
significant differences between 0.5 and 5 Hz (F1,3 ≥ 1.0). Thus, 
EEG power density in the 0.5- 5 Hz range was collapsed per sub-

anced in order to avoid possible order effects. Here we focus 
only on the high sleep pressure protocol, which comprised an 
8-h full polysomnography night in the laboratory, followed by 
3.5 consecutive days in the laboratory. During day 1, partici-
pants adjusted to the experimental dim light condition (< 8 lux). 
After a second 8-h sleep episode, all volunteers participated in 
a 40-h sleep deprivation protocol under controlled conditions 
(constant routine),23,24,39,40 followed by a recovery night. The 
timing of the 8-h sleep episode was calculated with respect to 
the midpoint of each individual’s habitual sleep episode, as as-
sessed by actigraphy and sleep logs during the baseline week. 
All wake episodes were spent under semi-recumbent constant 
routine conditions (< 8 lux) during wakefulness, with a minor 
shift to supine posture during scheduled sleep episodes (0 lux).24

EEG Recording, Subjective Ratings, and 
Melatonin during Wakefulness

The Karolinska Drowsiness Test (KDT)41,42 was performed 
every hour during scheduled wakefulness, starting 1 h after ha-
bitual wake time. During the KDT, volunteers were instructed 
to relax, to keep their eyes open, and to avoid movement for 
3 min, during which they had to fixate on a 5-cm dot attached 
to the wall at 1.5 m distance. These instructions were intended 
to maximize signal quality. Waking EEG activity was recorded 
continuously during the 40 h of extended wakefulness, using the 
Vitaport Ambulatory system (Vitaport-3 digital recorder TEM-
EC Instruments BV, Kerkrade, the Netherlands). Twelve EEG 
derivations (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, O1, O2, Oz 
referenced against linked mastoids), 2 electrooculograms, one 
submental electromyogram, and one electrocardiogram were 
recorded. All EEG signals were filtered at 30 Hz (fourth-order 
Bessel-type antialiasing low-pass filter, total 24 dB/Oct), and a 
time constant of 1.0 second was used prior to online digitization 
(range 610 μV, 12 bit AD converter, 0.15 μV/bit; storage sam-
pling rate at 128 Hz). The raw signals were stored online on a 
Flash RAM Card (Viking, Rancho Santa Margarita, CA, USA) 
and downloaded offline to a PC hard drive. EEGs were subject-
ed to spectral analysis using a fast Fourier transform (10% co-
sine 2-sec window), which resulted in a 0.5-Hz resolution. The 
3-min EEGs during the KDT were manually and visually scored 
for artifacts (eye blinks, body movements, and slow eye move-
ments) offline. Approximately 80% of the waking EEG data was 
used after rejecting for epochs with artifacts. The absolute EEG 
power densities were then calculated for artifact-free 2-s epochs 
in the frequency range of 0.5 to 20 Hz. For data reduction, arti-
fact-free 2-s epochs were averaged over 20-s epochs.24

Subjective sleepiness was assessed every 30 min on the 
Karolinska Sleepiness Scale (KSS).42 Subjective tension was 
assessed by a 100-mm bipolar VAS at 30-min intervals. The 
participants were asked to indicate how they felt “at the mo-
ment” by placing a vertical mark on the VAS ranging from 0 
(“worst ever”) to 100 mm (“best ever”). A similar VAS rating 
for mood was also made.43

Salivary collections for hormonal assays were scheduled dur-
ing wakefulness at the same 30-min intervals as the subjective 
ratings. A direct double-antibody radioimmunoassay was used 
for the melatonin assay (validated by gas chromatography-mass 
spectroscopy with an analytical least detectable dose of 0.65 
pm/mL; Bühlmann Laboratories, Schönenbuch, Switzerland).44 
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Overall, low-frequency EEG activity (0.5-5 Hz) showed 
a similar time course in both women with MDD and control 
women (Figure 2), with no significant differences in the interac-
tion terms “group” × “time” and “group” × “time” × “deriva-
tion,” although the interaction “group” × “derivation” yielded 
significant differences (F3,42 = 2.9; P < 0.05), indicating a frontal 
predominance of the increase in low-frequency EEG activity in 
MDD women compared to control women (Figure 2).

For enhanced visual illustration, a global cortical contour 
plot with the entire topography is provided in Figure 3 for EEG 
power density in the 0.5-5 Hz range. Average low-frequency 
EEG activity indicates higher values in frontal and central deri-
vations in the MDD than control women. Visual inspection of 
the contour plot over time (Figure 4) shows that MDD women 
had particularly high low-frequency EEG activity during the 
subjective night and early morning, as well as at 15:00 on the 
second day of extended wakefulness.

Subjective Sleepiness
The time course of subjective sleepiness ratings for MDD 

and control women during the 40-h of extended wakefulness 
are illustrated in Figure 5 (upper panel). The factor “group” 
yielded a tendency for higher sleepiness levels in MDD women 
(F1,15 = 3.6; P = 0.07), and significance for the factor “time-of-
day” (F10,150 = 17.1; P < 0.001), the latter showing the expected 
circadian and wake-dependent modulation of sleepiness in both 
groups. Certain time points (from 17 h, 21 h, and 24 h elapsed 
time into protocol) during the biological night yielded signifi-
cant higher sleepiness levels in the MDD than in the control 
women (F1,15 = 6.8; P < 0.02).

Subjective Tension
MDD women indicated significantly higher levels of subjec-

tive tension only after 20 h to 40 h of wakefulness compared to 
the control women (Figure 5, middle panel). Thus, the factor 
“group” yielded significance (F1,15 = 12.9; P < 0.03), although 
no differences were observed for the factor “time-of-day” 
(F10,150 = 0.81; n.s.) and the interaction “group” × “time-of-day.” 
However, certain time points from 17 h, 21 h, 24 h, and 28 h 
elapsed time into protocol during the biological night and next 
morning where significantly higher in the MDD women than in 
the control women (F1,15 = 18.75; P = 0.0005).

Melatonin
The time course of salivary melatonin levels is illustrated 

in Figure 5 (lower panel). The factor “group” yielded a ten-
dency for lower melatonin levels in MDD than control wom-
en (F1,15 = 3.7; P = 0.06). The factor “time-of-day” yielded 
significance (F10,150 = 16.2; P < 0.001), and the interaction 
term “group” × “time-of-day” almost reached significance 
(F10,150 = 1.9; P = 0.05), indicating an attenuation of nocturnal 
salivary melatonin secretion in the MDD women.

FLA and Depression Scores
Pearson correlations revealed positive and significant cor-

relations between FLA levels during extended wakefulness 
and depression baseline severity, derived from both the Hamil-
ton-7 Items (r = 0.75; P < 0.04) and MADRS (Figure 6; r = 0.8; 
P < 0.02).

ject in order to investigate the time course of low-frequency EEG 
activity in the course of the 40-h episode of extended wakefulness.

Figure 1—Absolute EEG power spectra during extended wakefulness along 
the antero-posterior axis (frontal, central, parietal, occipital). Women with 
MDD are indicated by closed dots and the control group by open symbols. 
Mean values are shown for each 0.5-Hz frequency bin in the range from 0.5 
to 20 Hz. A significant “group × derivation” effect was observed between 0.5 
and 5 Hz, and a significant group effect in the range of 0.5-2 Hz.
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this may not be a representative sample of patients with ma-
jor depression, it should be emphasized that MDD itself is 
a heterogeneous group with symptoms that crucially depend 
on numerous aspects, such as duration of disorder. Most im-
portantly, we could show that even in patients with MDD 
without medication and sleep disorders the homeostatic sleep 
regulation is significantly changed. In this context, one may 
speculate that changes in sleep homeostasis may anticipate 
and/or trigger severe MDD episode, especially when consid-
ering that our sample included women with mild episodes of 
MDD. Similarly, FLA could also be seen as a compensatory 
mechanism and/or reaction to increased depressive levels, as 

DISCUSSION
Overall FLA during extended wakefulness was higher in 

MDD than in healthy control women and correlated positively 
and significantly with depression severity. The time course of 
enhanced FLA was paralleled by higher subjective sleepiness 
and tension levels in MDD than in healthy control women. 
MDD women did not differ from controls in circadian mela-
tonin phase, but showed a significant attenuation of melatonin 
secretion during the biological night.

These are the first data in MDD addressing the waking as-
pect of the S deficiency hypothesis postulated by Borbély and 
Wirz-Justice.11 Surprisingly, unmedicated young women with 
MDD, a middle chronotype, and almost no sleep disturbances 
seem to live on a higher—not the hypothesized lower—ho-
meostatic sleep pressure, but with similar build-up rates dur-
ing extended wakefulness as found for healthy controls. The 
sleep aspect of the S-deficiency hypothesis was also studied 
in this same cohort (to be reported elsewhere),46 and they in-
deed showed elevated—not diminished—SWA levels during 
sleep. To our knowledge, there is only one early study that 
reported elevated SWA during wakefulness in right frontal 
brain regions in a mixed-gender group of MDD patients with 
a comparatively brief medication washout period.47 Together 
with the significant correlation with the MADRS and Hamil-
ton depression scores, elevated FLA levels in our MDD group 
women most likely reflect certain aspects of the disorder per 
se, and do not seem to be primarily caused by a sleep disorder 
or a major circadian misalignment. Thus, we speculate that 
the elevated FLA levels during wakefulness in an episode 
of major depression were a state rather than a trait marker 
in our MDD cohort. Support for this assumption also comes 
also from elevated SWA levels during sleep in the same MDD 
women.46 Our study sample comprised women with MDD 
who are unmedicated and without sleep disturbances. While 

Figure 2—Dynamics of low-frequency EEG activity (EEG power density in the 0.5-5 Hz band) during 40-h of extended wakefulness. Data were binned 
into 3.75-h time intervals (mean values ± SEM, n = 8) and plotted against relative time of day (h). Relative clock time represents the average clock time at 
which the time intervals occurred. For statistics see text. Local derivations on waking-EEG are summarized as frontal derivation (mean of F3, F4, Fz) central 
derivation (mean C3, C4, Cz), parietal derivation (mean of P3, P4, Pz), and occipital derivation (mean of O1, O2, Oz).
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maker.55 Thus, the observed decrease of circadian melatonin se-
cretion in our MDD cohort could reflect an attenuation of the 
circadian wake-promoting signal by increased homeostatic sleep 
pressure. This finding is consistent with previous forced desyn-
chrony studies in seasonal affective disorder (SAD) patients5,6 
and non-circadian protocols with depressed patients.48,49,53

It may be that low nocturnal melatonin levels and indeed low 
amplitude in many other variables5,6,47,56,59 are a reflection of di-
minished circadian signal in MDD. Lack of an adequate wake-
fulness signal may permit the expression of increased FLA and 
sleepiness in these patients. On the other hand, one could also 
argue that, since our results on the circadian system focus only 
on melatonin as a circadian marker, that the attenuated profile 
of melatonin in MDD could also reflect impaired nocturnal 
melatonin secretion. Taken together, these findings provide a 
possible explanation as to why bright light exposure, which 
increases the amplitude of the circadian system, may improve 
depressive symptoms in MDD.60

Limitations
Measuring behavior under highly controlled laboratory condi-

tions is pivotal to assess the contributions of circadian and ho-
meostatic processes to the EEG during wakefulness. Our sample 
comprised young, unmedicated, depressed women, and excluded 
those with sleep disturbances; thus, our findings are not represen-
tative for all patients suffering MDD. Likewise, the directionality 
of the results (MDD prior to changes in sleep homeostasis and 
vice-versa) cannot be predicted by this study design, since a cross-
sectional design and a constant routine protocol cannot provide a 
causal effect for these results. However, since the only difference 
between the depressive and control women was the depression 
per se, we could ideally test whether the observed changes are 
related to circadian and/or sleep homeostatic alterations.

CONCLUSIONS
The concomitant findings of higher FLA, subjective sleepi-

ness, tension, and attenuated melatonin levels in untreated 
young women with MDD under stringent laboratory condi-

indexed by an “over response” of the homeostatic sleep pro-
cess when challenged by 40 h of sleep deprivation.

Interestingly, there is more recent work, running in a similar 
direction, showing that suppressing low-frequency activity in 
the EEG during sleep in MDD patients leads to mood improve-
ments in those patients.48 On the other hand, enhancing low-
frequency activity during sleep marginally decreased positive 
mood in patients with MDD.49 These two studies lend support 
to our finding that the amount of FLA is significantly related to 
depression severity.

The topographic specificity of the increase in low-frequency 
activity—mainly frontal derivations—are an indication that 
women with MDD may be more susceptible to homeostatic 
sleep pressure, in particular the effects of prolonged wakeful-
ness, possibly due to a high “recovery need” of frontal heteromo-
dal association areas of the cortex, which are strongly affected 
by elevated sleep pressure as shown in PET studies.50 Alter-
natively, our results of higher FLA could represent a biologi-
cal correlate of higher cognitive rumination in MDD patients, 
known as “brooding,” which is a core process in the onset and 
maintenance of depression.51,52 Depressive rumination could 
be seen as a state of higher arousal during wakefulness, which 
could have resulted in elevated subjective tension. If slow wave 
homeostasis is associated with net synaptic strength, postulated 
by Tononi et al. to increase during wakefulness and decrease 
during sleep,53 then higher cognitive rumination should lead 
to higher FLA during wakefulness, and FLA could be a proxy 
of more intense upscaling of synaptic strength in MDD. Thus, 
one could speculate that our subjects with MDD had an altered 
regulation of synaptic plasticity. Results from a recent study 
indeed support the hypothesis of decreased synaptic plasticity 
in patients with MDD.54

Enhanced FLA levels affect the circadian timing system. There 
is recent evidence for a crosstalk between systems regulating 
sleep-wake homeostasis and endogenous circadian rhythmicity 
in the hypothalamus.55 High sleep pressure levels considerably 
suppressed activity in the anterior hypothalamus, including the 
suprachiasmatic area, the brain site of the central circadian pace-

Figure 4—Time course of low-frequency EEG activity (in the range of 0.5-5 Hz) during 40 h of extended wakefulness. These contour plots (i.e., heads) 
describe the difference between low-frequency EEG activity in the MDD and control women across 11 time points in the high sleep pressure protocol. MDD 
women showed higher low-frequency EEG activity, particularly during the subjective night and early morning, as well as at 15:00 during the second day. 
Maximum difference between MDD women and controls is shown in yellow (max: MDD women > controls) and the minimum difference between the 2 groups 
is shown in light blue (max: controls > MDD women).
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Figure 6—Linear regression between the values of the depression score 
(MADRS; 8-20) on the x-axis and the value of FLA (y-axis) across the 40 
h of extended wakefulness (r = 0.8; P < 0.02).
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